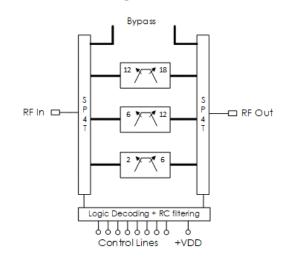
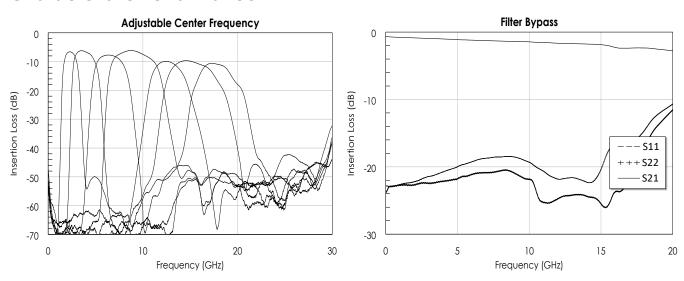
Digitally Tunable 2 to 18 GHz Bandpass


Description

AM3163 is a digitally tunable bandpass filter bank covering the 2 GHz to 18 GHz frequency range. The device provides three separate tunable filter bands with 16 low-pass and 16 high-pass tuning states for independent control of both the center frequency and bandwidth. The filter bank has integrated switches with a 20 GHz bypass path. AM3163 is packaged in a 6mm QFN package and operates over the -40C to +85C temperature range. Its small size, weight, and power consumption make it an attractive choice for demanding applications requiring low SWaP components.


Features

- 2 to 18 GHz Digitally Tunable Bandpass Filter Bank
- Internal SP4T Switches
- Integrated Control Line Filtering
- Independent LP and HP control
- +3.3V to +5.0V Supply
- 8 dB typical Insertion Loss
- 20 GHz Filter Bypass Path
- +39 dBm Input IP3
- +26 dBm Input P1dB
- -40C to +85C Operation
- 6mm QFN

Functional Diagram

Characteristic Performance

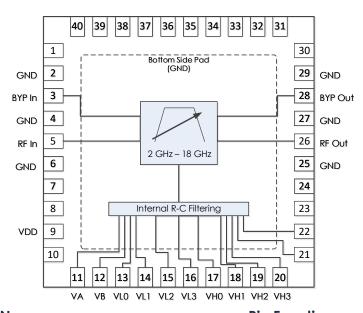
To obtain price, delivery, or to place an order contact sales@atlantamicro.com

AM3163 – Filter Bank

Digitally Tunable 2 to 18 GHz Bandpass

Table of Contents

Description1	DC Electrical Characteristics5
Features1	RF Performance5
Functional Diagram1	Timing Characteristics 5
Characteristic Performance1	State Table6
Revision History2	Typical Performance7
Pin Layout and Definitions3	Typical Application10
Specifications4	Evaluation PC Board11
Absolute Maximum Ratings4	Related Parts11
Handling Information4	Component Compliance Information 12
Recommended Operating Conditions4	


Revision History

Date	Revision Number	Notes
August 26, 2020	1	Initial Release
May 4, 2021	2	Updated diagrams

Pin Layout and Definitions

Note: All Non-Assigned Pins are GND

Pin Number	Pin Name	Pin Function			
1-2	GND	Ground – Common			
3	BYP In	Filter Bypass Input Side – 50 Ohms – DC Coupled, External DC Blocking Cap Required			
4	GND	Ground – Common			
5	RF In	RF Input – 50 Ohms – DC Coupled, External DC Blocking Cap Required			
6-8	GND	Ground – Common			
9	VDD	DC Power Input			
10	GND	Ground – Common			
11	VA	Switch Control A			
12	VB	Switch Control B			
13	VL0	Low Pass Filter Control Bit 0 (LSB)			
14	VL1	Low Pass Filter Control Bit 1			
15	VL2	Low Pass Filter Control Bit 2			
16	VL3	High Pass Filter Control Bit 3 (MSB)			
17	VH0	High Pass Filter Control Bit 0 (LSB)			
18	VH1	High Pass Filter Control Bit 1			
19	VH2	High Pass Filter Control Bit 2			
20	VH3	High Pass Filter Control Bit 3 (MSB)			
21-25	GND	Ground - Common			
26	RF Out	RF Output – 50 Ohms – DC Coupled, External DC Blocking Cap Required			
27	GND	Ground – Common			
28	BYP Out	Filter Bypass Output Side – 50 Ohms – DC Coupled, External DC Blocking Cap Required			
29-30	GND	Ground - Common			
Bottom Pad	GND	Ground – Common			

Specifications

Absolute Maximum Ratings

	Minimum	Maximum
Supply Voltage	-0.3 V	+8.0 V
RF Input Power		+27 dBm
Operating Junction Temperature	-40 C	+150 C
Storage Temperature Range	-50 C	+150 C

Note: Any device operation beyond the Absolute Maximum Ratings may result in permanent damage to the device. The values listed in this table are extremes and do not imply functional operation of the device at these or any other conditions beyond what is listed under Recommended Operating Conditions. Any part subjected to conditions outside of what is recommended for an extended amount of time may suffer from reliability concerns.

Handling Information

	Minimum	Maximum
Storage Temperature Range (Recommended)	-50 C	+125 C
Moisture Sensitivity Level	MSL 1	

Atlanta Micro products are electrostatic sensitive. Follow safe handling practices to avoid damage

Recommended Operating Conditions

	Minimum	Typical	Maximum
Supply Voltage	+3.0 V	+5.0 V	+5.2 V
Operating Case Temperature	-40 C		+85 C
Operating Junction Temperature	-40 C		+125 C

AM3163 – Filter Bank

Digitally Tunable 2 to 18 GHz Bandpass

DC Electrical Characteristics

(T = 25 °C unless otherwise specified)

Parameter	Testing Conditions	Minimum	Typical	Maximum
DC Supply Voltage		+3.0 V	+5.0 V	+5.2 V
DC Supply Current	VDD = +5.0 V		6 mA	
Power Dissipated	VDD = +5.0 V		30 mW	
Logic Level Low		-0.1 V		+0.5 V
Logic Level High		+2.0 V		+VDD V

RF Performance

(T = 25 °C unless otherwise specified)

Parameter	Testing Conditions	Minimum	Typical	Maximum
Frequency Range		2 GHz		18 GHz
Insertion Loss	f = 2 GHz		-7.1 dB	
	f = 4 GHz		-6.3 dB	
	f = 6 GHz		-7.7 dB	
	f = 9 GHz		-6.2 dB	
	f = 12 GHz		-7.2 dB	
	f = 15 GHz		-9.8 dB	
	f = 18 GHz		-11 dB	
Return Loss			-12 dB	
Input IP3	VDD = +5.0 V		+39 dBm	
Input P1dB	VDD = +5.0 V		+26 dBm	

Timing Characteristics

Parameter	Minimum	Typical	Maximum
Switching Speed		40 ns	
Band Tuning Speed		400 ns	

State Table

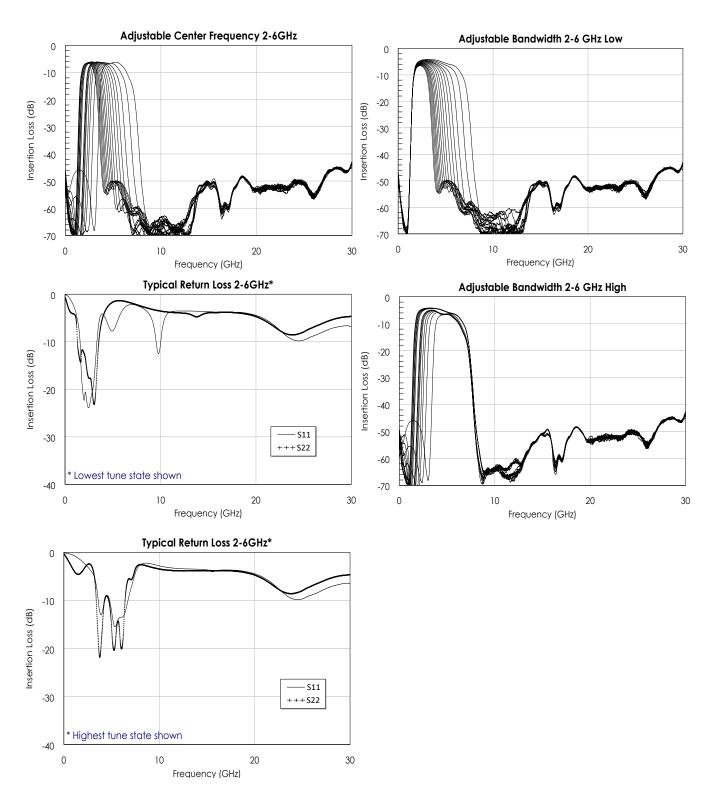
VA	VB	Filter Band
Low	Low	Bypass State
High	High	Band 1 – 2.0 to 6.0 GHz
Low	High	Band 2 – 6.0 to 12 GHz
High	Low	Band 3 – 12 to 18 GHz

Notes:

1. OIP3 was measured at 10 MHz input tone spacing

State Table (continued)

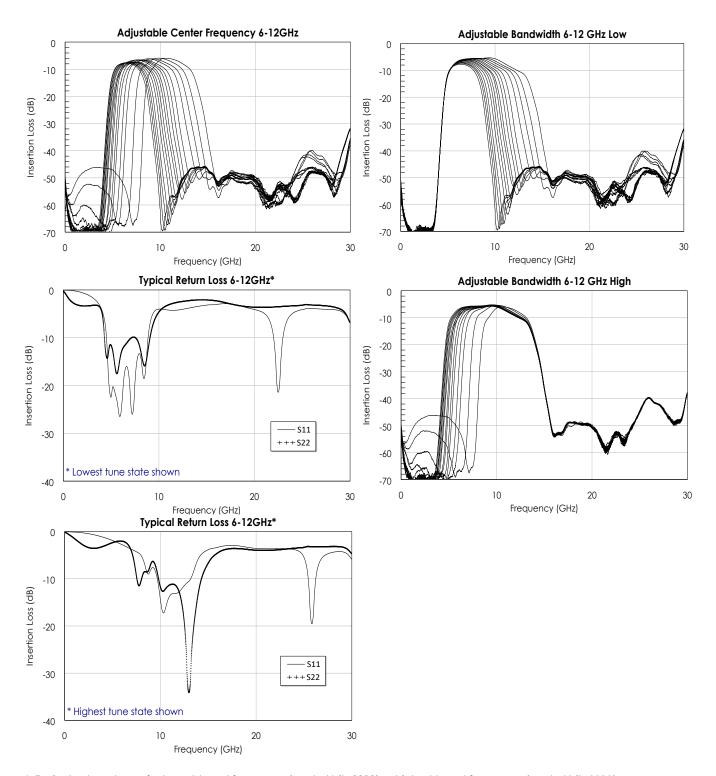
High Pass Filter Typical Cutoff Frequencies (GHz)


VH3	VH2	VH1	VH0	Band 1	Band 2	Band 3
Low	Low	Low	Low	1.7	5.1	11
Low	Low	Low	High	1.8	5.2	11.1
Low	Low	High	Low	1.85	5.3	11.2
Low	Low	High	High	1.9	5.3	11.4
Low	High	Low	Low	1.92	5.4	11.4
Low	High	Low	High	1.96	5.5	11.5
Low	High	High	Low	2	5.7	11.7
Low	High	High	High	2.1	5.9	12
High	Low	Low	Low	2.4	5.8	11.8
High	Low	Low	High	2.44	6	12
High	Low	High	Low	2.5	6.3	12.3
High	Low	High	High	2.6	6.5	12.7
High	High	Low	Low	2.8	6.8	12.8
High	High	Low	High	3	7.3	13.4
High	High	High	Low	3.3	8.1	14.2
High	High	High	High	3.9	9.1	15.8

Low Pass Filter Typical Cutoff Frequencies (GHz)

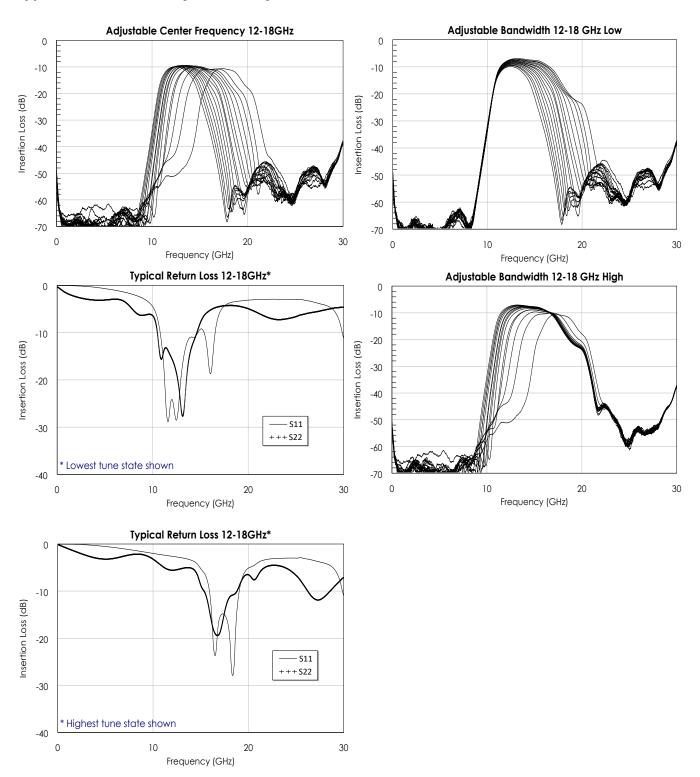
VL3	VL2	VL1	VL0	Band 1	Band 2	Band 3
Low	Low	Low	Low	2.9	7.8	13.8
Low	Low	Low	High	3	8	13.9
Low	Low	High	Low	3.1	8.1	14.1
Low	Low	High	High	3.2	8.3	14.4
Low	High	Low	Low	3.3	8.6	14.5
Low	High	Low	High	3.4	8.8	14.9
Low	High	High	Low	3.5	9	15.2
Low	High	High	High	3.7	9.1	15.4
High	Low	Low	Low	3.9	9.2	15.7
High	Low	Low	High	4.1	9.5	16
High	Low	High	Low	4.3	9.8	16.2
High	Low	High	High	4.5	10.1	16.6
High	High	Low	Low	4.8	10.6	16.7
High	High	Low	High	5.1	11	17.2
High	High	High	Low	5.6	11.6	18
High	High	High	High	6.3	12.3	19.6

Digitally Tunable 2 to 18 GHz Bandpass


Typical Performance

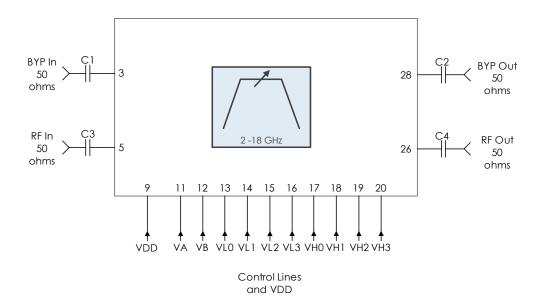
^{*} Typical values shown for lowest tuned frequency (control bits 0000) or highest tuned frequency (control bits 1111)

Digitally Tunable 2 to 18 GHz Bandpass


Typical Performance (continued)

^{*} Typical values shown for lowest tuned frequency (control bits 0000) or highest tuned frequency (control bits 1111)

Digitally Tunable 2 to 18 GHz Bandpass

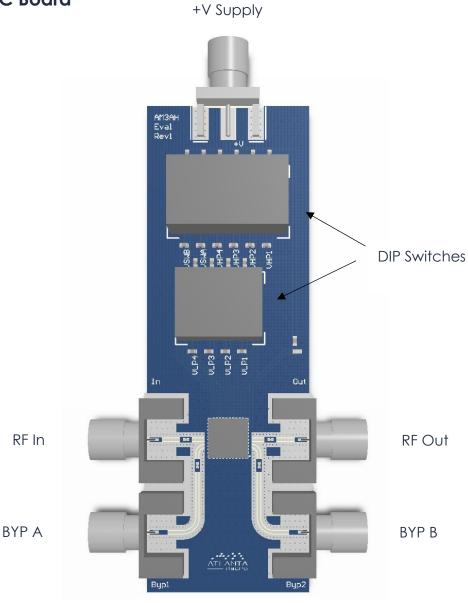

Typical Performance (continued)

^{*} Typical values shown for lowest tuned frequency (control bits 0000) or highest tuned frequency (control bits 1111)

Digitally Tunable 2 to 18 GHz Bandpass

Typical Application

Recommended Component List (or equivalent):


Part	Value	Part Number	Manufacturer
C1-C4	0.1 μF	0201BB104KW160	Passives Plus

Notes:

- 1. DC blocking capacitors should be high performance, low-loss, broadband capacitors for optimum performance.
- 2. VDD and control lines filtered internally providing high frequency isolation.

Evaluation PC Board

Related Parts

Part Number				Description	
AM3152	0.4 GHz	to	8 GHz	Digitally Tunable Bandpass Filter	
AM3066	12 GHz	to	26.5 GHz	Digitally Tunable Bandpass Filter	

Component Compliance Information

RoHS: Atlanta Micro, Inc. hereby certifies that all products comply with the EC Directive 2011/65/EC on the Restriction of Hazardous Substances, commonly known as EU-RoHS 6 and 10. All products supplied by Atlanta Micro shall be compliant with the European Directive 2011/65/EC based on the following substance list.

Substance List	Allowable Maximum Concentration
Lead (Pb)	<1000 PPM (0.1% by weight)
Mercury (Hg)	<1000 PPM (0.1% by weight)
Cadmium (Cd)	<75 PPM (0.0075% by weight)
Hexavalent Chromium (CrVI)	<1000 PPM (0.1% by weight)
Polybrominated Biphenyls (PBB)	<1000 PPM (0.1% by weight)
Polybrominated Diphenyl ethers (PBDE)	<1000 PPM (0.1% by weight)
Decabromodiphenyl Deca BDE	<1000 PPM (0.1% by weight)
Bis (2-ethylheyl) Phthalate (DEHP)	<1000 PPM (0.1% by weight)
Butyl Benzyl Phthalate (BBP)	<1000 PPM (0.1% by weight)
Dibutyl Phthalate (DBP)	<1000 PPM (0.1% by weight)
Diisobutyl Phthalate (DIBP)	<1000 PPM (0.1% by weight)

REACH: Atlanta Micro, Inc. neither uses nor intentionally adds any of the substances considered to be a Substance of Very High Concern (SVHC) as defined by the EU Regulation (EC) No. 1907-2006 on Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH).

Conflict Materials: Atlanta Micro does not knowingly use materials that are sourced from the Democratic Republic of Congo (DRC) or any other known conflict regions. Atlanta Micro's supply chain is comprised of sources that are both environmentally and socially responsible. We periodically review this requirement with our vendors to ensure continued compliance.

Atlanta Micro takes its responsibility as a global partner seriously and will use due diligence within our supply chain to ensure all standards are met to the best of our knowledge.