

C2M0045170D

Silicon Carbide Power MOSFET C2M™ MOSFET Technology N-Channel Enhancement Mode

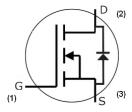
Features

- 2nd generation SiC MOSFET technology
- High blocking voltage with low On-Resistance
- · High speed switching with low capacitances
- Resistant to latch-up
- · Halogen Free, RoHS Compliant

Benefits

- Higher system efficiency
- · Reduced cooling requirements
- · Increased power density
- Increased system switching frequency

Applications


- Solar inverters
- Switch Mode Power Supplies
- High voltage DC/DC converters
- Motor drive
- · Pulsed power applications

Package

Part Number	Package	Marking	
C2M0045170D	TO-247-3L	C2M0045170D	

Maximum Ratings (T_c = 25 °C unless otherwise specified)

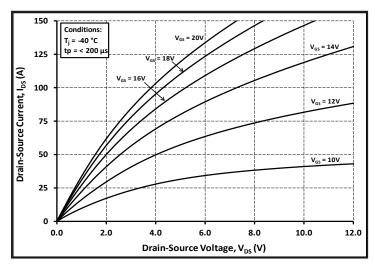
Symbol	Parameter	Value	Unit	Test Conditions	Note
V_{DSmax}	Drain - Source Voltage	1700	٧	V _{GS} = 0 V, I _D = 100 μA	
V_{GSmax}	Gate - Source Voltage	-10/+25	٧	Absolute maximum values, AC (f >1 Hz)	Note: 1
V_{GSop}	Gate - Source Voltage	-5/+20	٧	Recommended operational values	Note: 2
,	Continuous Drain Current	75	А	V _{GS} =20 V, T _C = 25°C	Fig. 19
I _D Continuous Drain Current	Continuous Diain Current	48	A	V _{GS} =20 V, T _C = 100°C	
I _{D(pulse)}	Pulsed Drain Current	160	А	Pulse width t _P limited by T _{jmax}	Fig. 22
P _D	Power Dissipation	338	W	T _c =25°C, T _J = 150 °C	Fig. 20
T_J , T_{stg}	Operating Junction and Storage Temperature	-40 to +150	°C		
T _L	Solder Temperature	260	°C	1.6mm (0.063") from case for 10s	
M _d	Mounting Torque	1 8.8	Nm lbf-in	M3 or 6-32 screw	

Note (1): When using MOSFET Body Diode $V_{\rm GSmax}$ = -5V/+25V Note (2): MOSFET can also safely operate at 0/+20V

Electrical Characteristics ($T_c = 25^{\circ}C$ unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Unit	Test Conditions	Note
$V_{(BR)DSS}$	Drain-Source Breakdown Voltage	1700			٧	V _{GS} = 0 V, I _D = 100 μA	
V	V _{GS(th)} Gate Threshold Voltage	2.0	3.0	4	V	$V_{DS} = V_{GS}$, $I_D = 18mA$	Fig. 11
V GS(th)	Gate Threshold Voltage		2.5		V	V _{DS} = V _{GS} , I _D = 18mA, T _J = 150 °C	Fig. 11
I _{DSS}	Zero Gate Voltage Drain Current		2	100	μΑ	V _{DS} = 1700 V, V _{GS} = 0 V	
I _{GSS}	Gate-Source Leakage Current			600	nA	V _{GS} = 20 V, V _{DS} = 0 V	
$R_{DS(on)}$	Drain-Source On-State Resistance		40	70	mΩ	V _{GS} = 20 V, I _D = 50 A	Fig.
D3(011)			80	ļ		V _{GS} = 20 V, I _D = 50 A, T _J = 150 °C	4,5,6
Q fs	Transconductance		24.7		S	V _{DS} = 20 V, I _{DS} = 50 A	Fig. 7
			23.4	ļ	ļ -	V _{DS} = 20 V, I _{DS} = 50 A, T _J = 150 °C	
C _{iss}	Input Capacitance		3455			V _{GS} = 0 V	
C_{oss}	Output Capacitance		171		pF	V _{DS} = 1200 V	Fig. 17,18
C _{rss}	Reverse Transfer Capacitance		6.7		1	f = 1 MHz	
Eoss	Coss Stored Energy		139		μJ	Vac = 25 mV	Fig 16
C _{o(er)}	Effective Output Capacitance (Energy Related)		188		pF	V _{GS} = 0 V, V _{DS} = 0 1200V	Note: 3
$C_{o(tr)}$	Effective Output Capacitance (Time Related)		255		pF		
Eon	Turn-On Switching Energy (SiC Diode FWD)		2.5			V _{DS} = 1200 V, V _{GS} = -5/20 V,	Fig. 26,
E _{OFF}	Turn Off Switching Energy (SiC Diode FWD)		1.4		- mJ	I_D = 50A, $R_{G(ext)}$ = 2.5Ω, L= 99 μH, T_J = 150 °C, using SiC Diode as FWD	29b Note 2
Eon	Turn-On Switching Energy (Body Diode FWD)		4.9			V _{DS} = 1200 V, V _{GS} = -5/20 V,	Fig. 26,
E _{OFF}	Turn Off Switching Energy (Body Diode FWD)		1.1		mJ	$I_D = 50A$, $R_{G(ext)} = 2.5\Omega$, L= 99 μ H, $T_J = 150$ °C, using MOSFET as FWD	29a Note 2
t _{d(on)}	Turn-On Delay Time		68			V _{DD} = 1200 V, V _{GS} = -5/20 V	
t _r	Rise Time		19		- ns	I_D = 50 A, $R_{G(ext)}$ = 2.5 Ω , Timing relative to V_{DS} Inductive load	Fig. 27, 29 Note 2
t _{d(off)}	Turn-Off Delay Time		35				
t _f	Fall Time		19				
R _{G(int)}	Internal Gate Resistance		1.3		Ω	f = 1 MHz, V _{AC} = 25 mV	
Q_{gs}	Gate to Source Charge		43			V _{DS} = 1200 V, V _{GS} = -5/20 V	
Q_{gd}	Gate to Drain Charge		74		nC	I _D = 50 A	Fig. 12
Qg	Total Gate Charge		200			Per IEC60747-8-4 pg 21	

Note (3): $C_{o(er)}$, a lumped capacitance that gives same stored energy as Coss while Vds is rising from 0 to 1200V $C_{o(tr)}$, a lumped capacitance that gives same charging time as Coss while Vds is rising from 0 to 1200V


Reverse Diode Characteristics

Symbol	Parameter	Тур.	Max.	Unit	Test Conditions	Note
V	Diode Forward Voltage	3.8		٧	V _{GS} = - 5 V, I _{SD} = 25 A	Fig. 8, 9,
V _{SD}		3.4		V	$V_{GS} = -5 \text{ V, } I_{SD} = 25 \text{ A, } T_{J} = 150 \text{ °C}$	Note 1
Is	Continuous Diode Forward Current		76	А	V _{GS} = - 5 V, T _C = 25 °C	Note 1
I _{S, pulse}	Diode pulse Current		160	Α	V_{GS} = - 5 V, pulse width t_P limited by T_{jmax}	Note 1
t _{rr}	Reverse Recovery Time	53		ns		
Q_{rr}	Reverse Recovery Charge	461		nC	V _{GS} = - 5 V, I _{SD} = 50 A , V _R = 1200 V dif/dt = 1000 A/µs, T _J = 150 °C	
I _{rrm}	Peak Reverse Recovery Current	14		Α	. J	
t _{rr}	Reverse Recovery Time	40		ns		
Q_{rr}	Reverse Recovery Charge	481		nC	V _{GS} = - 5 V, I _{SD} = 50 A , V _R = 1200 V dif/dt = 3040 A/μs, Τ _J = 150 °C	
I _{rrm}	Peak Reverse Recovery Current	22		А		

Thermal Characteristics

Symbol	mbol Parameter		Max.	Unit	Test Conditions	Note
R _{BJC} Thermal Resistance from Junction to Case		0.25	0.37	°C /\\		Fig. 21
R _{BJC} Thermal Resistance from Junction to Ambient			40	°C/W		

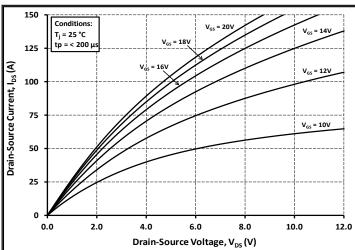
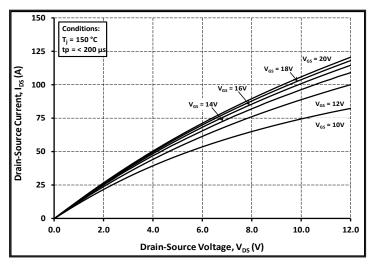



Figure 1. Output Characteristics T_J = -40 °C

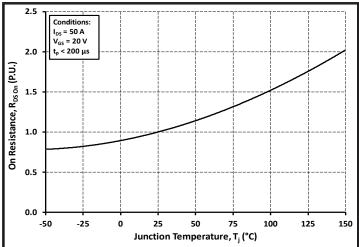
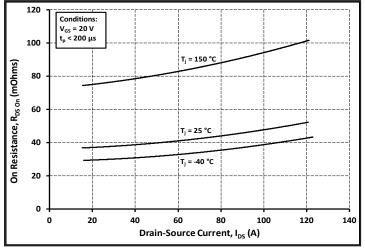



Figure 3. Output Characteristics T_J = 150 °C

Figure 4. Normalized On-Resistance vs. Temperature

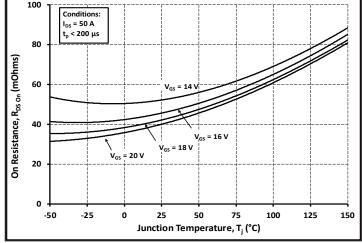
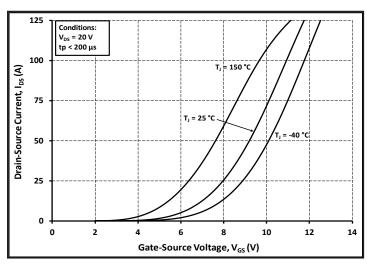



Figure 5. On-Resistance vs. Drain Current For Various Temperatures

Figure 6. On-Resistance vs. Temperature For Various Gate Voltage

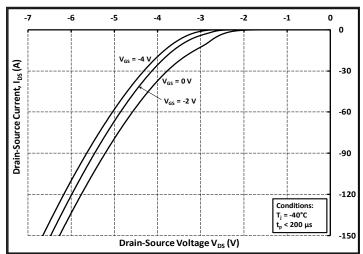
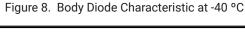
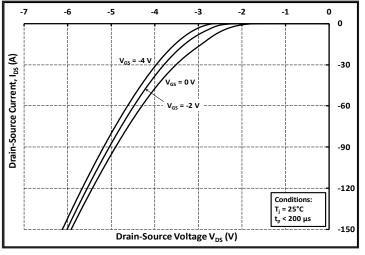




Figure 7. Transfer Characteristic For Various Junction Temperatures

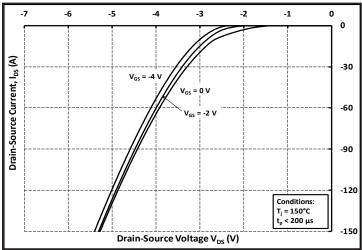
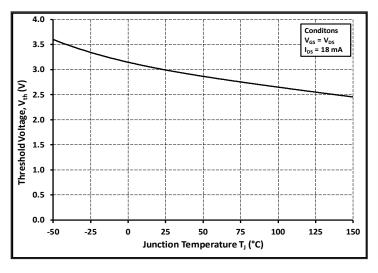



Figure 9. Body Diode Characteristic at 25 °C

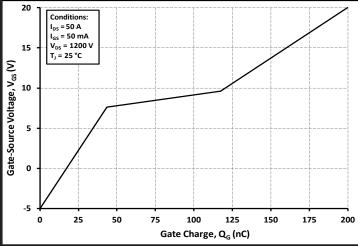
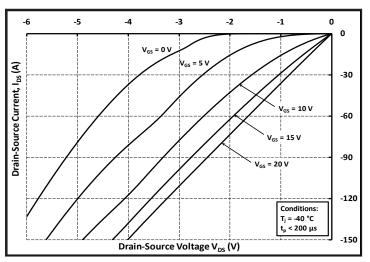



Figure 11. Threshold Voltage vs. Temperature

Figure 12. Gate Charge Characteristic

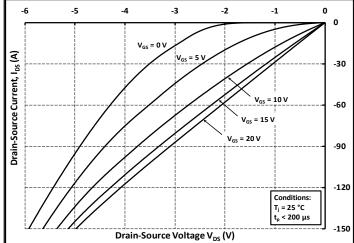
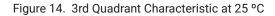
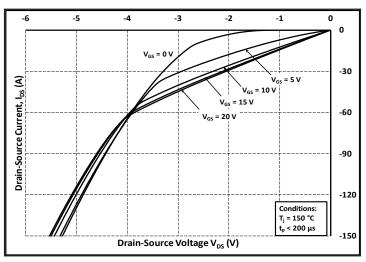




Figure 13. 3rd Quadrant Characteristic at -40 °C

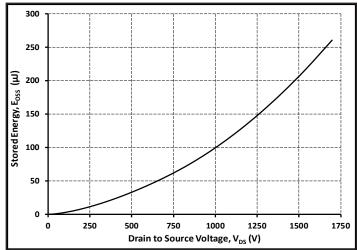
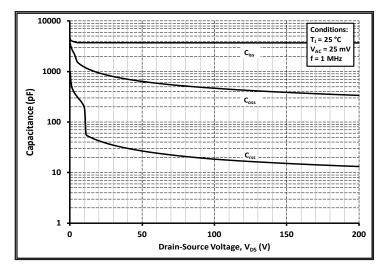



Figure 15. 3rd Quadrant Characteristic at 150 °C

Figure 16. Output Capacitor Stored Energy

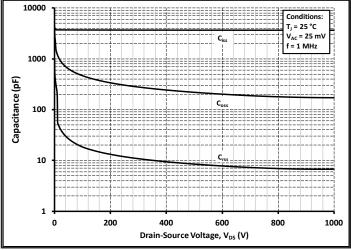


Figure 17. Capacitances vs. Drain-Source Voltage (0-200 V)

Figure 18. Capacitances vs. Drain-Source Voltage (0-1000 V)

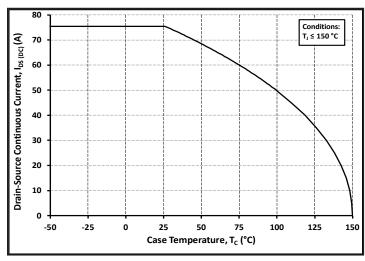


Figure 19. Continuous Drain Current Derating vs.

Case Temperature

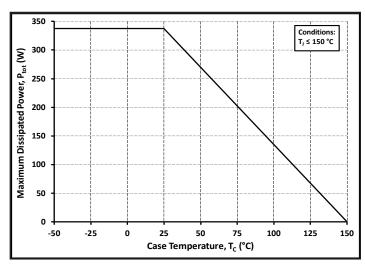


Figure 20. Maximum Power Dissipation Derating vs.

Case Temperature

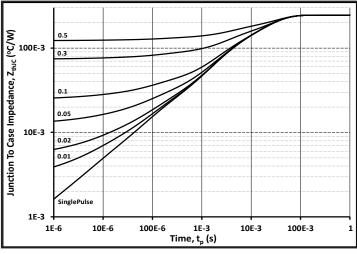


Figure 21. Transient Thermal Impedance (Junction - Case)

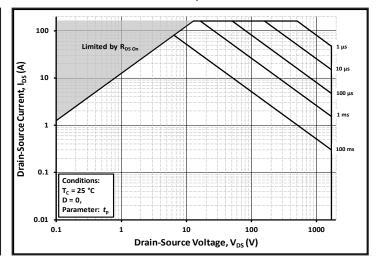


Figure 22. Safe Operating Area

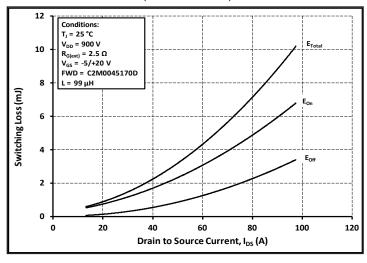


Figure 23. Clamped Inductive Switching Energy vs. Drain Current (V_{DD} = 900V)

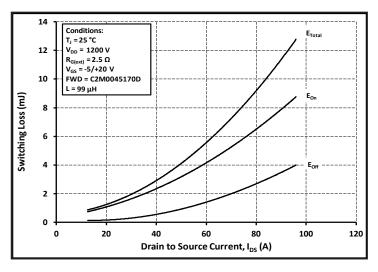
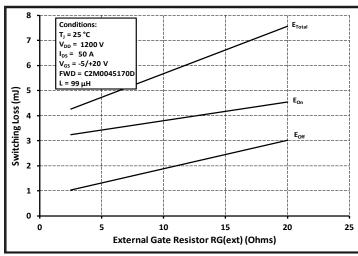



Figure 24. Clamped Inductive Switching Energy vs. Drain Current ($V_{DD} = 1200V$)

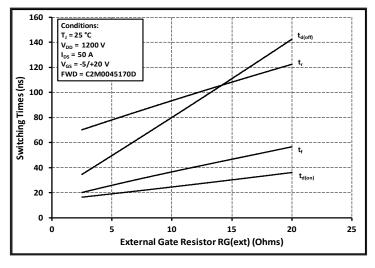


Figure 27. Switching Times vs. $R_{G(ext)}$

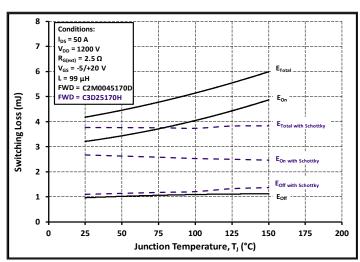


Figure 26. Clamped Inductive Switching Energy vs.
Temperature

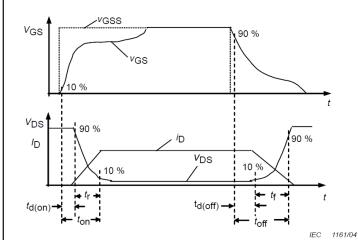


Figure 28. Switching Times Definition

Test Circuit Schematic

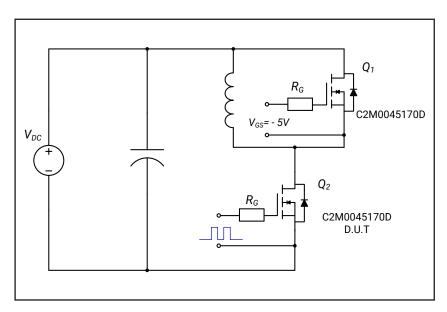


Figure 29a. Clamped Inductive Switching Test Circuit using MOSFET intristic body diode

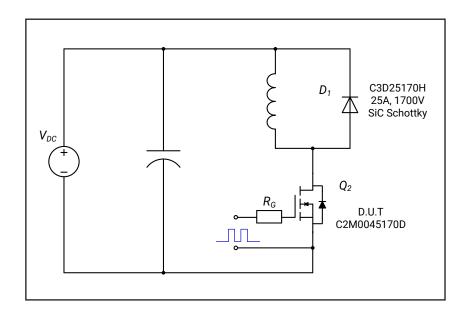
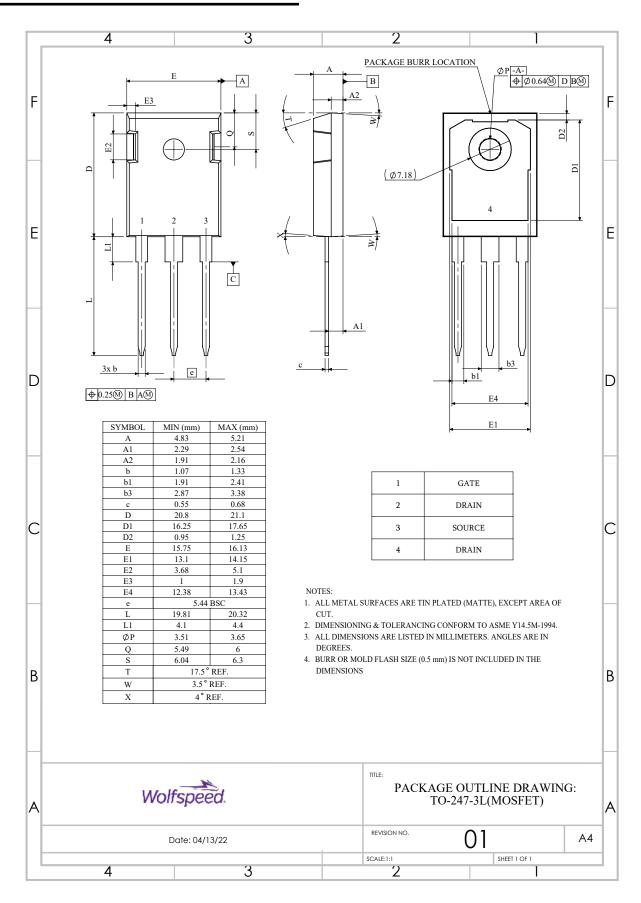
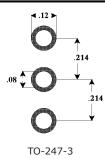



Figure 29b. Clamped Inductive Switching Test Circuit using SiC Schottky diode



Package Dimensions

Recommended Solder Pad Layout

Revision history

Document Version	Date of release	Descriptiion of changes
Rev -	June - 2016	Initial datasheet
Rev 1	May - 2022	Added effective output capacitance, Typical values updated to support PCN-1278.

Note:

This document and the information contained herein are subject to change without notice. Any such change shall be evidenced by the publication of an updated version of this document by Wolfspeed. No communication from any employee or agent of Wolfspeed or any third party shall effect an amendment or modification of this document. No responsibility is assumed by Wolfspeed for any infringement of patents or other rights of third parties which may result from use of the information contained herein. No license is granted by implication or otherwise under any patent or patent rights of Wolfspeed.

Not withstanding any application-specific information, guidance, assistance, or support that Wolfspeed may provide, the buyer of this product is solely responsible for determining the suitability of this product for the buyer's purposes, including without limitation for use in the applications identified in the next bullet point, and for the compliance of the buyers' products, including those that incorporate this product, with all applicable legal, regulatory, and safety-related requirements.

This product has not been designed or tested for use in, and is not intended for use in, applications in which failure of the product would reasonably be expected to cause death, personal injury, or property damage, including but not limited to equipment implanted into the human body, life-support machines, cardiac defibrillators, and similar emergency medical equipment, aircraft navigation, communication, and control systems, aircraft power and propulsion systems, air traffic control systems, and equipment used in the planning, construction, maintenance, or operation of nuclear facilities.

RoHS Compliance

The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/EC (RoHS2), as implemented January 2, 2013. RoHS Declarations for this product can be obtained from your Wolfspeed representative or from the Product Documentation sections of www.Wolfspeed.com.

REACh Compliance

REACh substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future, please contact your Wolfspeed representative to ensure you get the most up-to-date REACh SVHC Declaration. REACh banned substance information (REACh Article 67) is also available upon request.

For more information please contact: 4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 www.wolfspeed.com/power