

C3M0025065J1

Silicon Carbide Power MOSFET C3M™ MOSFET Technology N-Channel Enhancement Mode

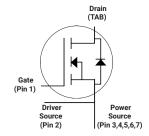
Features

- 3rd generation SiC MOSFET technology
- · Optimized package with separate driver source pin
- High blocking voltage with low on-resistance
- High-speed switching with low capacitances
- Fast intrinsic diode with low reverse recovery (Q,,)
- Halogen free, RoHS compliant

Benefits

- Reduce switching losses and minimize gate ringing
- Higher system efficiency
- Reduce cooling requirements
- Increase power density
- · Increase system switching frequency

Applications


- Datacenter and Telecom Power Supplies
- EV Battery Chargers
- High voltage DC/DC converters
- Energy Storage Systems
- Solar Inverters

Package

Part Number	Package	Marking	
C3M0025065J1	TO-263-7L XL	C3M0025065J1	

Maximum Ratings (T_c=25°C, unless otherwise specified)

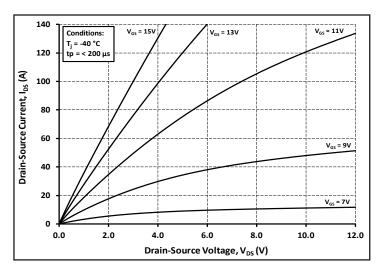
Symbol	Parameter	Value	Unit	Note
V _{DSmax}	Drain - Source Voltage	650	٧	
V _{GSmax}	Gate - Source voltage	-8/+19	٧	Note 1
	Continuous Drain Current, V_{GS} = 15 V, T_C = 25°C		,	F: 10
l _D	Continuous Drain Current, V _{GS} = 15 V, T _C = 100°C	59	А	Fig. 19
I _{D(pulse)}	Pulsed Drain Current, Pulse width t _P limited by T _{jmax}		Α	
P _D	Power Dissipation, T _c =25°C, T _J = 150 °C		W	Fig. 20
T _J , T _{stg}	Operating Junction and Storage Temperature		°C	
T _L	Solder Temperature, 1.6mm (0.063") from case for 10s	260	°C	

Note (1): Recommended turn off / turn on gate voltage V_{GS} - 4V...0V / +15V

Electrical Characteristics (T_c = 25°C unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Unit	Test Conditions	Note	
$V_{(BR)DSS}$	Drain-Source Breakdown Voltage	650			V	V _{GS} = 0 V, I _D = 100 μA		
V_{GSon}	Gate-Source Recommended Turn-On Voltage		15		V	Static		
V_{GSoff}	Gate-Source Recommended Turn-Off Voltage		-4		V	Static		
$V_{GS(th)}$	Gate Threshold Voltage	1.8	2.3	3.6	V	V _{DS} = V _{GS} , I _D = 9.22 mA	Fig. 11	
▼ GS(th)	date Threshold Voltage		2.0		V	V _{DS} = V _{GS} , I _D = 9.22 mA, T _J = 150°C	Fig. 11	
I _{DSS}	Zero Gate Voltage Drain Current		1	50	μΑ	V _{DS} = 650 V, V _{GS} = 0 V		
I _{GSS}	Gate-Source Leakage Current		10	250	nA	V _{GS} = 15 V, V _{DS} = 0 V		
D	Drain-Source On-State Resistance		25	34	mΩ	V _{GS} = 15 V, I _D = 33.5 A	Fig. 4,	
$R_{DS(on)}$	Drain-Source On-State Resistance		30		11112	$V_{GS} = 15 \text{ V}, I_{D} = 33.5 \text{ A}, T_{J} = 150^{\circ}\text{C}$	Fig. 4, 5,6	
g_{fs}	Transconductance		25		s	V _{DS} = 20 V, I _{DS} = 33.5 A	Fig. 7	
918	Transconductance		24		<u> </u>	V _{DS} = 20 V, I _{DS} = 33.5 A, T _J = 150°C		
C _{iss}	Input Capacitance		2980			$V_{GS} = 0 \text{ V, } V_{DS} = 0 \text{ V to } 400 \text{ V}$	Fig. 17,	
C_{oss}	Output Capacitance		178			F = 1 Mhz		
C_{rss}	Reverse Transfer Capacitance		12		pF	V _{AC} = 25 mV		
$C_{\text{o(er)}}$	Effective Output Capacitance (Energy Related)		236]	V = 0.V.V = 0.V.+o.400.V	Note: 2	
$C_{o(tr)}$	Effective Output Capacitance (Time Related)		340			$V_{GS} = 0 \text{ V, } V_{DS} = 0 \text{V to } 400 \text{ V}$	Note: 2	
E _{oss}	Coss Stored Energy		19		μJ	V _{DS} = 400 V, F = 1 Mhz	Fig. 16	
Eon	Turn-On Switching Energy (Body Diode)		116			$V_{DS} = 400 \text{ V}, V_{GS} = -4 \text{ V}/15 \text{ V}, I_D = 33.5 \text{ A}, R_{G(ext)} = 2.5 \Omega, L = 59 \mu H, T_J = 25^{\circ} C$		
E _{OFF}	Turn Off Switching Energy (Body Diode)		59		μJ	FWD = Internal Body Diode of MOSFET	Fig. 25	
t _{d(on)}	Turn-On Delay Time		13				Fig. 26	
t _r	Rise Time		20]	V_{DD} = 400 V, V_{GS} = -4 V/15 V I_D = 33.5 A, $R_{S(ext)}$ = 2.5 Ω, L= 59 μH Timing relative to V_{DS}		
t _{d(off)}	Turn-Off Delay Time		25		ns	Timing relative to V _{DS}		
t _f	Fall Time		9					
$R_{G(int)}$	Internal Gate Resistance		1.3		Ω	f = 1 MHz, V _{AC} = 25 mV		
$Q_{\rm gs}$	Gate to Source Charge		35					
Q_{gd}	Gate to Drain Charge		31		nC	$V_{DS} = 400 \text{ V}, V_{GS} = -4 \text{ V}/15 \text{ V}$ $I_{D} = 33.5 \text{ A}$ Per IEC60747-8-4 pg 21	Fig. 12	
Qg	Total Gate Charge		109			Fel 12000/4/-0-4 pg 21		

Note (2): C_{o(e1)}, a lumped capacitance that gives same stored energy as Coss while Vds is rising from 0 to 400V C_{o(t1)}, a lumped capacitance that gives same charging time as Coss while Vds is rising from 0 to 400V


Reverse Diode Characteristics ($T_c = 25^{\circ}C$ unless otherwise specified)

Symbol	Parameter	Тур.	Max.	Unit	Test Conditions	Note
$V_{ ext{SD}}$	Diode Forward Voltage	5.0		٧	$V_{GS} = -4 \text{ V, } I_{SD} = 16.8 \text{ A, } T_{J} = 25 \text{ °C}$ $V_{GS} = -4 \text{ V, } I_{SD} = 16.8 \text{ A, } T_{J} = 150 \text{ °C}$	
V _{SD}		4.5		٧		
Is	Continuous Diode Forward Current		45	Α	V _{GS} = -4 V, T _C = 25°C	
S, pulse	Diode pulse Current		251	Α	V_{GS} = -4 V, pulse width t_P limited by T_{jmax}	
t _{rr}	Reverse Recover time	13		ns		
Q_{rr}	Reverse Recovery Charge	274		nC	V _{GS} = -4 V, I _{SD} = 33.5 A, V _R = 400 V dif/dt = 5665 A/μs, T _J = 25 °C	
I _{rrm}	Peak Reverse Recovery Current	37		Α		
t _{rr}	Reverse Recover time	16		ns	V _{GS} = -4 V, I _{SD} = 33.5 A, V _R = 400 V dif/dt = 1630 A/μs, T _J = 25 °C	
Q _{rr}	Reverse Recovery Charge	164		nC		
I _{rrm}	Peak Reverse Recovery Current	17		А		

Thermal Characteristics

Symbol	Parameter	Тур.	Unit	Test Conditions	Note
R _{θJC}	Thermal Resistance from Junction to Case	0.46			F: 01
$R_{\theta JA}$	Thermal Resistance From Junction to Ambient	40	°C/W		Fig. 21

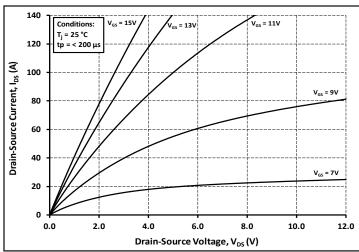
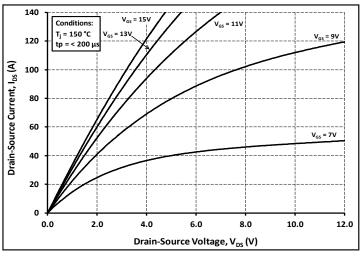



Figure 1. Output Characteristics T_J = -40 °C

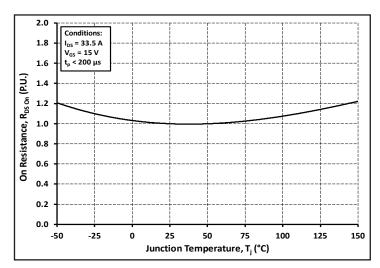
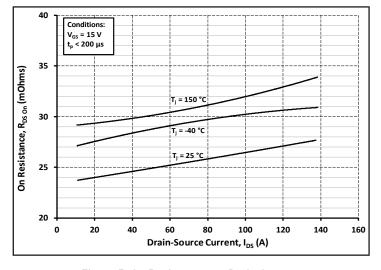



Figure 3. Output Characteristics T_J = 150 °C

Figure 4. Normalized On-Resistance vs. Temperature

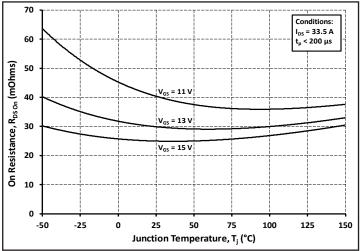
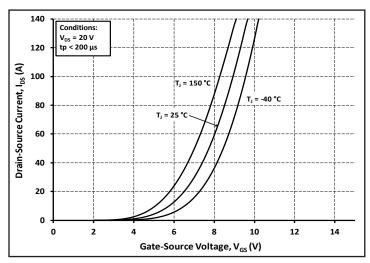



Figure 5. On-Resistance vs. Drain Current For Various Temperatures

Figure 6. On-Resistance vs. Temperature For Various Gate Voltage

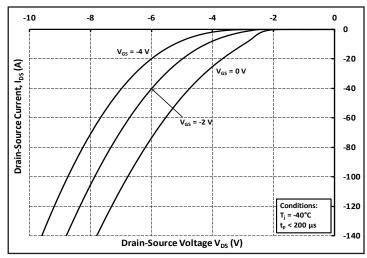
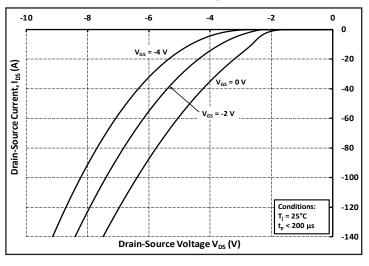



Figure 7. Transfer Characteristic for Various Junction Temperatures

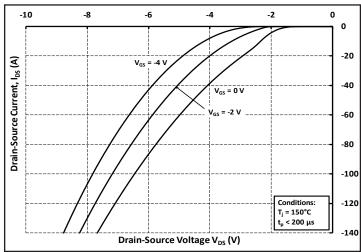
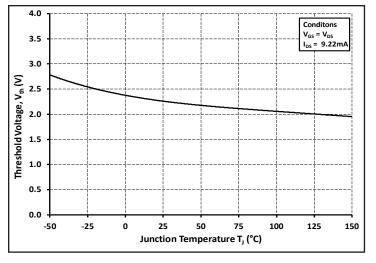



Figure 9. Body Diode Characteristic at 25 °C

Figure 10. Body Diode Characteristic at 150 °C

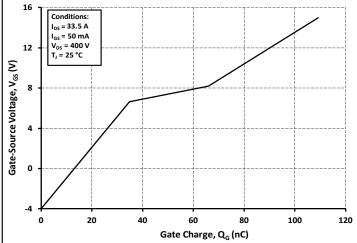
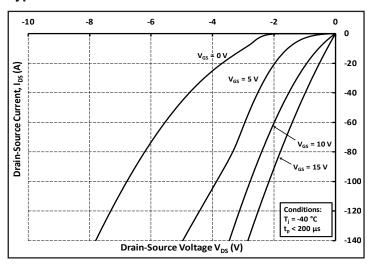
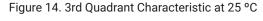
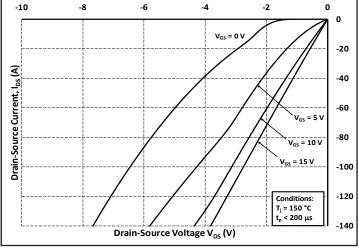



Figure 11. Threshold Voltage vs. Temperature

Figure 12. Gate Charge Characteristics





-10 -8 -6 -4 -2 0 -20 ₹ Drain-Source Current, I -40 -60 -80 -100 Conditions: -120 T_j = 25 °C < 200 μs -140 Drain-Source Voltage V_{DS} (V)

Figure 13. 3rd Quadrant Characteristic at -40 °C

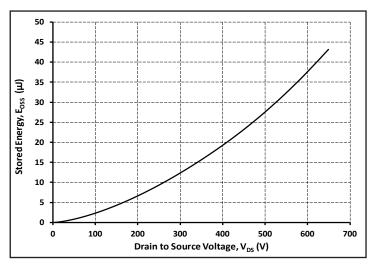
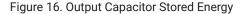
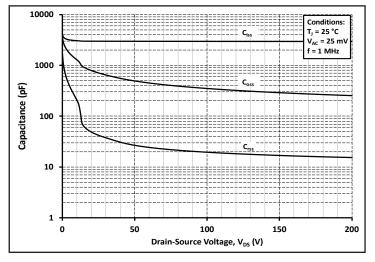




Figure 15. 3rd Quadrant Characteristic at 150 °C

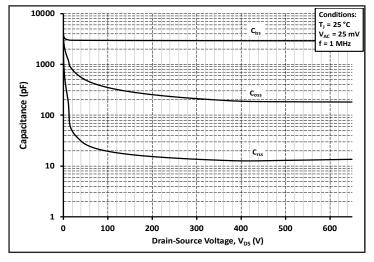
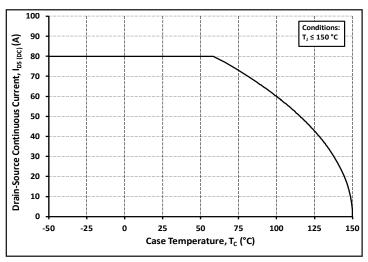



Figure 17. Capacitances vs. Drain-Source Voltage (0 - 200V)

Figure 18. Capacitances vs. Drain-Source Voltage (0 - 600V)

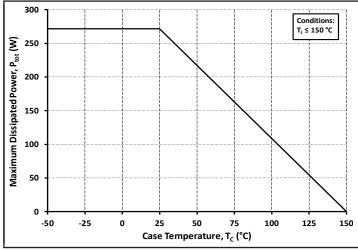
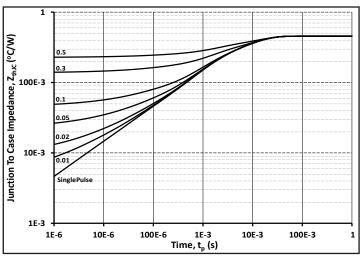



Figure 19. Continuous Drain Current Derating vs.

Case Temperature

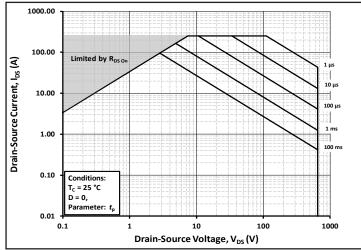
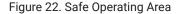
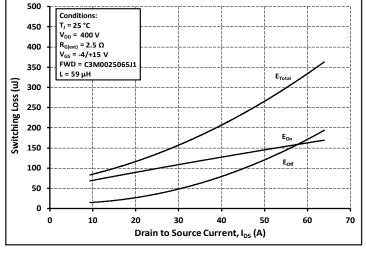




Figure 21. Transient Thermal Impedance (Junction - Case)

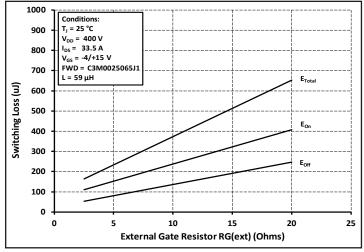
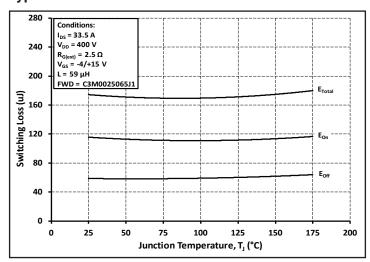



Figure 23. Clamped Inductive Switching Energy vs. Drain Current (V_{DD} = 400V)

Figure 24. Clamped Inductive Switching Energy vs. $R_{\rm G(ext)}$

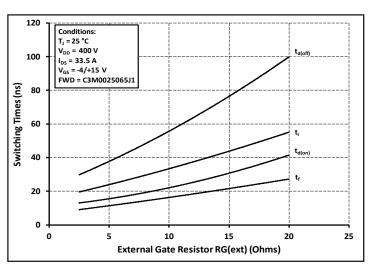


Figure 25. Clamped Inductive Switching Energy vs.
Temperature

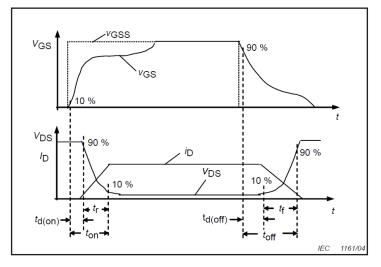


Figure 27. Switching Times Definition

Test Circuit Schematic

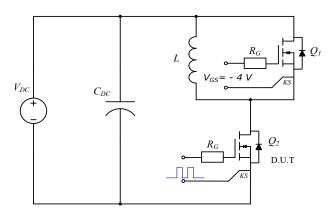
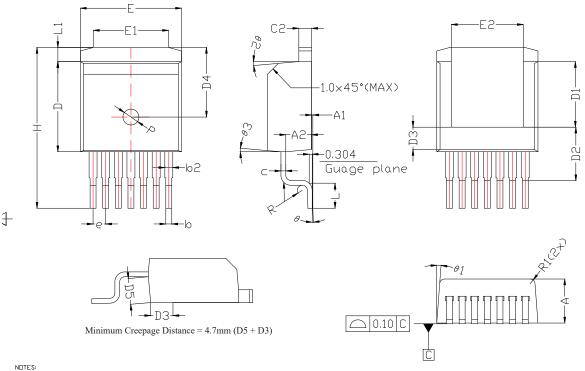



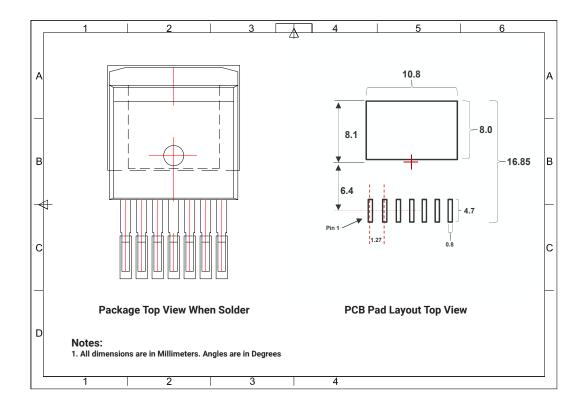
Figure 28. Clamped Inductive Switching Waveform Test Circuit

Note (3): Turn-off and Turn-on switching energy and timing values measured using SiC MOSFET Body Diode as shown above.

Package Dimensions

TO-263-7L XL

DIM	MIN	MAX	TYP			
D	9.025	9.125	9.075			
E	10.13	10.23	10.18			
Α	4.30	4.57	4.435			
Н	15.043	17.313	16.178			
D1	6.50	6.70	6.60			
E1	6.50	8.60	7.55			
D2		.39 RE	F.			
E2	6.778	7.665	7.223			
DЗ	2.148		2.248			
D4	7	.00 RE	F.			
D5	2.555		2.605			
A1	0	0.25	0.125			
A2	2.	595 R	EF.			
е	1.	27 TY	P			
L	2.324	2.70	2.512			
b	0.50	0.70	0.60			
L1	0.968	1.868	1.418			
b2	0.60	1.00	0.80			
C2	1.17	1.37	1.27			
C	0.281	0.481	0.381			
R	0.506 REF.					
R1	0.50 REF.					
Р	Ø1.60 REF.					
θ	0°	8°	4°			
θ1	4.5°	5.5°	5°			
θ2	4°	6°	5°			
θ3	4°	6°	5°			


NOTES:

1. ALL DIMENSIONS ARE IN MILLIMETER. ANGLES ARE IN DEGREE.
2. DIMENSION 'D' DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS. INTERLEAD FLASH SHALL
NOT EXCEDD 0.50 MM PER SIDE. DIMENSION 'E' DOES NOT INCLUDE MOLD FLASH, GATE BURRS,THE
GATE BURRS SHALL NOT EXCEED 0.30MM .

3. THE PACKAGE TOP MAY BE SMALLER THAN THE PACKGE BOTOM. DIMENSIONS D AND E ARE
DETERMINED AT THE OUTERMOST EXTERMES OF THE PLASTIC BODY EXCLUSIVE OF MOLD FLASH, TIE
BAR BURRS, GATE BURRS AND INTERLEAD FLASH,BUT INCLUDING ANY MISMATCH BETWEEN THE TOP
AND BOTTOM OF THE PLASTIC BODY.

4. '62' DIMENSION DON'T INCLUDE DAMBAR PROTRUSION.

5. THE VOID SHOULD BE CONTROL WITHIN 0.25MM.

Notes

This document and the information contained herein are subject to change without notice. Any such change shall be evidenced by the publication of an updated version of this document by Cree. No communication from any employee or agent of Cree or any third party shall effect an amendment or modification of this document. No responsibility is assumed by Cree for any infringement of patents or other rights of third parties which may result from use of the information contained herein. No license is granted by implication or otherwise under any patent or patent rights of Cree.

Not withstanding any application-specific information, guidance, assistance, or support that Cree may provide, the buyer of this product is solely responsible for determining the suitability of this product for the buyer's purposes, including without limitation for use in the applications identified in the next bullet point, and for the compliance of the buyers' products, including those that incorporate this product, with all applicable legal, regulatory, and safety-related requirements.

This product has not been designed or tested for use in, and is not intended for use in, applications in which failure of the product would reasonably be expected to cause death, personal injury, or property damage, including but not limited to equipment implanted into the human body, life-support machines, cardiac defibrillators, and similar emergency medical equipment, aircraft navigation, communication, and control systems, aircraft power and propulsion systems, air traffic control systems, and equipment used in the planning, construction, maintenance, or operation of nuclear facilities.

RoHS Compliance

The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/EC (RoHS2), as implemented January 2, 2013. RoHS Declarations for this product can be obtained from your Cree representative or from the Product Documentation sections of www.cree.com.

REACh Compliance

REACh substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future, please contact your Cree representative to ensure you get the most up-to-date REACh SVHC Declaration. REACh banned substance information (REACh Article 67) is also available upon request.

For more information please contact: 4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 www.wolfspeed.com/power