

High Efficiency DC/DC Power Module

MPN24AD03-UP-T

FEATURES:

- High Density Power Module
- 3A Output Current
- Input Voltage Range from 4.75V to 26.5V
- Output Voltage Range from 3V to 21V
- 98% Peak Efficiency
- 98% Duty-Cycle Operation
- Output Line-drop Compensation
- Enable / PGOOD Function
- Internal Soft Start
- Protections (OCP, OTP, OVP, UVP, Nonlatching)
- DFN Package (7.4 X 8.6 X 6.0mm max)
- Pb-free Available (RoHS compliant)
- MSL 3, 245°C Reflow

GENERAL DESCRIPTION:

The MPN24AD03-UP-T is a high frequency, high power density and complete DC/DC power module. The PWM controller, power MOSFETs and most of support components are integrated into one hybrid package.

The module has automatic operation with PWM mode and power saving mode according to loading. MPN24AD03-UP-T is with single-stage buck conversion allows these devices to directly step down high-voltage input for the highest possible efficiency.

MPN24AD03-UP-T is with programmable output voltage by FB pins and supports USB Power Delivery (PD) requirement

APPLICATIONS:

- Power Supply for Linear Charge
- USB Power Supply

TYPICAL APPLICATION CIRCUIT & PACKAGE SIZE:

FIG.1 Typical Application Circuit

ORDER INFORMATION:

Part Number	Ambient Temp. Range (°C)	e Package MSL (Pb-Free)		Note
MPN24AD03-UP-T	-40 ~ +85	DFN	Level 3	-

Order Code	Packing	Quantity
MPN24AD03-UP-T	Tape and Reel	500

PIN CONFIGURATION:

Top View

Symbol	Pin No.	Description		
VOUT	1, 2, 16	Power output pin. Connect to output for the load.		
		Enable control and adjustable cable compensation pin.		
	3	Connect a resistor between EN/COMP_SEL and GND		
EN/COMP SEI		pins to select cable compensation for prevent output		
		voltage drop in the output cable.		
		Pull the EN/COMP_SEL pin < 14k Ω to GND disables the		
		module, the pin floating to enable the module.		
PGND	4, 5, 6, 10	Power ground pin.		
DCOOD	11	Power OK indication. This pin is set high impedance after		
PGOOD	11	VFB soft start reaches 90% threshold and no fault occurs.		
SGND	12	Analog ground pin.		
VIN	7, 8	Power input pin.		
SW	9	Switching node pin.		
FB	13	Feedback input. Connect an external resistor divider to set the		
	15	output voltage.		
CSN	14	The current sense input (-) pin		
CSP	15	The current sense input (+) pin		

ELECTRICAL SPECIFICATIONS:

CAUTION: Do not operate at or near absolute maximum rating listed for extended periods of time. This stress may adversely impact product reliability and result in failures not covered by warranty.

Parameter	Description	Min.	Тур.	Max.	Unit
 Absolute Maximum Ratings 					
VIN to PGND			-	+30	V
CSN,CSP to GND		-0.3	-	+24	V
PGOOD to GND		-0.3	-	+6.0	V
EN/COMP_SEL, to SGND		-0.3	-	+6.0	V
FB to SGND		-0.3	-	+6.0	V
Тс	Choke temperature	-	-	+110	°C
Tj	Operating temperature	-40	-	+125	°C
Tstg	Storage temperature	-40	-	+125	°C
	Human Body Model (HBM)	-	-	2k	V
ESD	Charge Device Model (CDM)	-	-	500	V
 Recommendation Operating Ratings 					
VIN Input Supply Voltage		+4.75	-	+26.5	V
VOUT Output Supply Voltage		3	-	+21	V
Thermal Information					
Rth(ja) Thermal resistance from junction to ambient.(Note 2)		-	42.7	-	°C/W

NOTES:

1. The test board size is 30mm×30mm×1.6mm with 4 layers 2oz, on 0 LFM condition.

The test condition is complied with JEDEC EIJ/JESD 51 Standards.

ELECTRICAL SPECIFICATIONS: (Cont.)

Conditions: T_A = 25 °C, unless otherwise specified. Test Board Information: 30mm×30mm×1.6mm, 4 layers 20z .

The output ripple and transient response measurement is short loop probing and 20MHz bandwidth limited.

Vin = 20.0V, Vout = 5.0V, unless otherwise specified. Cin = 10uF/50V/1210X 2, Cout = 22uF/25V/1210+56uF/25V (ESR: $50m\Omega$) + 0.1uF/50V/0603

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
 Input Characteristics 						
I _{IN}	Input supply bias current	Iout = 0A Vin = 20V, Vout = 5.0V	-	0.3	-	mA
Is	Input supply current	Iout = 3A Vin =20V, Vout = 5.0V	-	0.82	-	А
■ Out	put Characteristics					
I _{out(dc)}	Output continuous current range	$R_{SENSE} = 10m\Omega$	0	-	3.0	А
Vout(ac)	Output ripple voltage	Iout = 3A Vin = 20V, Vout = 5.0V	-	25	-	mVp-p
R _{DIS}	Output discharge resistance		-	5	-	kΩ
■ Con	trol Characteristics					
V _{FB}	Feedback voltage		0.99	1	1.01	V
Ren/comp	EN/COMP_SEL logic low	REN/COMP falling	-	-	14	kΩ
$I_{\text{EN/COMP}}$	EN/COMP_SEL Current		-	5	-	uA
Rpgood	Internal resistor between LDO output and PGOOD pins		-	100	-	kΩ
V _{PG-H}	PGOOD voltage High	PGOOD Open / No Fault	5.63	5.8	5.97	V
Tss	Soft-Start time	From VOUT=0% to 100%	-	18	-	mS
Fosc	Oscillator frequency		-	450	-	kHz
■ Faul	t Protection					
OCP	Over-current threshold	$R_{SENSE} = 10 m \Omega$	-	3.5	-	А
I _{LIM}	High side current limit protection		5	7	-	А
	VOUT OVP Threshold	PGOOD from H to L	-	120	-	%
OVP	VOUT OVP Release Threshold	PGOOD from L to H	-	117.5	-	%
VOUT UVP Threshold		PGOOD from H to L	-	80	-	%
UVP	VOUT UVP Release Threshold	PGOOD from L to H	-	90	-	%
T _{SD}	Shutdown temperature		-	130	-	°C
T _{SDHYS}	Thermal shutdown hysteresis		-	20	-	°C

TYPICAL PERFORMANCE CHARACTERISTICS: (5 VOUT)

Conditions: TA = 25 °C, unless otherwise specified. Test Board Information: $30mm \times 30mm \times 1.6mm$, 4 layers 2Oz. The output ripple and transient response measurement is short loop probing and 20MegHz bandwidth limited. Cin = 10uF/50V/1210X 2, Cout = 22uF/25V/1210+56uF/25V (ESR: $50m\Omega$) + 0.1uF/50V/0603, R_{EN/COMP_SEL}= $180k\Omega$ The following figures provide the typical characteristic curves at 5.0Vout.

TYPICAL PERFORMANCE CHARACTERISTICS: (9.0 VOUT)

Conditions: TA = 25 °C, unless otherwise specified. Test Board Information: $30mm \times 30mm \times 1.6mm$, 4 layers 2Oz. The output ripple and transient response measurement is short loop probing and 20MegHz bandwidth limited. Cin = 10uF/50V/1210X 2, Cout = 22uF/25V/1210+56uF/25V (ESR: $50m\Omega$) + 0.1uF/50V/0603, R_{EN/COMP_SEL}= $180k\Omega$ The following figures provide the typical characteristic curves at 9.0Vout.

TYPICAL PERFORMANCE CHARACTERISTICS: (12.0 VOUT)

Conditions: TA = 25 °C, unless otherwise specified. Test Board Information: $30mm \times 30mm \times 1.6mm$, 4 layers 2Oz. The output ripple and transient response measurement is short loop probing and 20MegHz bandwidth limited. Cin = 10uF/50V/1210X 2, Cout = 22uF/25V/1210+56uF/25V (ESR: $50m\Omega$) + 0.1uF/50V/0603, R_{EN/COMP_SEL}= $180k\Omega$ The following figures provide the typical characteristic curves at 12.0Vout.

TYPICAL PERFORMANCE CHARACTERISTICS: (20.0 VOUT)

Conditions: TA = 25 °C, unless otherwise specified. Test Board Information: $30mm \times 30mm \times 1.6mm$, 4 layers 2Oz. The output ripple and transient response measurement is short loop probing and 20MegHz bandwidth limited. Cin = 10uF/50V/1210X 2, Cout = 22uF/25V/1210+56uF/25V (ESR: $50m\Omega$) + 0.1uF/50V/0603, R_{EN/COMP_SEL}= $180k\Omega$ The following figures provide the typical characteristic curves at 20.0Vout.

APPLICATIONS INFORMATION:

Output Line-drop Compensation

In charger applications, the large load will cause voltage drop in the output cable. The module has a builtin cable compensation function. The adjustable Line Compensation (mV)/A is set according to the following equation 1:

$$I_{OUT} \times R_{SENSE} \times k \times \left[\frac{(R_{FB_T} + R_{FB_B})}{R_{FB_B}}\right]$$
(EQ.1)

When $R_{EN/COMP_SEL} = 360k\Omega$ or Floating , k = 0.8 $R_{EN/COMP_SEL} = 180k\Omega$, k = 1.2 $R_{EN/COMP_SEL} = 91k\Omega$, k = 1.6 $R_{EN/COMP_SEL} = 43k\Omega$, disable Line Compensation

PROGRAMMING OUTPUT VOLTAGE:

The module has an internal $1V\pm1.0\%$ reference voltage. The output voltage can be programmed by the dividing resistor (R_{FB_T} and R_{FB_B}). The output voltage can be calculated by Equation 2, resistor choice may be referred to TABLE 1.

$$V_{OUT} = 1 \times \left(1 + \frac{R_{FB_T}}{R_{FB_B}}\right)$$
(EQ.2)

 $R_{FB_B} \leq 100 k\,\Omega$, at $V_{OUT} = 3.3 V{\sim}21 V$

VOUT (V)	R _{FB_T} (kΩ)	$R_{FB_B}(k\Omega)$
3.3	57.5	25
5.0	100	25
9.0	200	25
12.0	275	25
20.0	475	25

TABLE 1 Resistor values for common output voltages

APPLICATIONS INFORMATION: (Cont.)

Output Over Current Limit

The Output Current limit is set at 3.5A by default with an external resistance $R_{SENSE} = 10 m \Omega$, When the (CSP_OUT) - (CSN_OUT) voltage gets higher than 35mV and reaches the current limit, the driver is turned off. MPN24AD03-UP-T provides the lower output over current protection by external sense resistor, R_{sense} . Please refer to below equation 3 to get the lower limit.

$$I_{OCP} = 35mV/R_{SENSE}$$
(EQ.3)

REFLOW PARAMETERS:

Lead-free soldering process is a standard of electronic products production. Solder alloys like Sn/Ag, Sn/Ag/Cu and Sn/Ag/Bi are used extensively to replace the traditional Sn/Pb alloy. Sn/Ag/Cu alloy (SAC) is recommended for this power module process. In the SAC alloy series, SAC305 is a very popular solder alloy containing 3% Ag and 0.5% Cu and easy to obtain. Figure 46 shows an example of the reflow profile diagram. Typically, the profile has three stages. During the initial stage from room temperature to 150°C, the ramp rate of temperature should not be more than 3°C/sec. The soak zone then occurs from 150°C to 200°C and should last for 60 to 120 seconds. Finally, keep at over 217°C for 60 seconds limit to melt the solder and make the peak temperature at the range from 240°C to 250°C. It is noted that the time of peak temperature should depend on the mass of the PCB board. The reflow profile is usually supported by the solder vendor and one should adopt it for optimization according to various solder type and various manufacturers' formulae.

FIG.46 Recommendation Reflow Profile

PACKAGE OUTLINE DRAWING:

PACKAGE OUTLINE DRAWING:

PACKING INFORMATION:

PACKING INFORMATION: (Cont.)

REVISION HISTORY:

Date	Revision	Changes
20200219	00	Release the preliminary specification.
20200814	01	Add PGOOD function
20201215	02	Modify Land Patter and Stencil Pattern information
20210331	03	Modify Output ripple and Efficiency