

Silicon Carbide Power MOSFET C2M[™] MOSFET Technology N-Channel Enhancement Mode

Features

- 2nd generation SiC MOSFET technology
- Optimized package with separate driver source pin
- 8mm of creepage distance between drain and source
- High blocking voltage with low on-resistance
- High speed switching with low capacitances
- Resistant to latch-up
- Halogen free, RoHS compliant

TO-247-4L Plus

Package Types: TO-247-4L Plus PN's: C2M0045170P

Wolfspeed, Inc. is in the process of rebranding its products and related materials pursuant to the entity name change from Cree, Inc. to Wolfspeed, Inc. During this transition period, products received may be marked with either the Cree name and/or logo or the Wolfspeed name and/or logo.

Applications

- Solar inverters
- Switch mode power supplies
- High voltage DC/DC converters
- Motor drive
- Pulsed power applications

Benefits

- Reduce switching losses and minimize gate ringing
- Higher system efficiency
- Reduced cooling requirements
- Increased power density
- Increased system switching frequency

Maximum Ratings (T_c = 25 °C Unless Otherwise Specified)

Parameter	Symbol	Value	Unit	Test Conditions	Note
Drain - Source Voltage	V_{DSmax}	1700		$V_{GS} = 0 \text{ V}, I_{D} = 100 \mu\text{A}$	
Gate - Source Voltage	V_{GSmax}	-10/+25	V	Absolute Maximum Values, AC (f >1 Hz)	Note: 1
Gate - Source Voltage	V_{GSop}	-5/+20		Recommended Operational Values	Note: 2
Continuous Drain Current	I _D	75	А	V _{GS} = 20 V, T _C = 25 °C	Fig. 19
		48		$V_{GS} = 20 \text{ V}, T_{C} = 100 ^{\circ}\text{C}$	
Pulsed Drain Current	I _{D (pulse)}	160		Pulse Width t _p Limited by T _{jmax}	Fig. 22
Power Dissipation	P _D	338	W	$T_{c} = 25 ^{\circ}\text{C}, T_{J} = 150 ^{\circ}\text{C}$	Fig. 20
Operating Junction and Storage Temperature	T _J , T _{stg}	-40 to +150	°C		
Solder Temperature	T _L	260	°C	According to JEDEC J-STD-020	

Note (1): When using MOSFET body diode $V_{GSmax} = -5 \text{ V}/+25 \text{ V}$.

Note (2): MOSFET can also safely operate at 0/+20 V.

Electrical Characteristics ($T_c = 25$ °C Unless Otherwise Specified)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Conditions	Note
Drain-Source Breakdown Voltage	V _{(BR)DSS}	1700				$V_{GS} = 0 \text{ V}, I_{D} = 100 \mu\text{A}$	
Gate Threshold Voltage		2.0	3.0	4	V	$V_{DS} = V_{GS}$, $I_D = 18 \text{ mA}$	Fig. 11
	$V_{GS(th)}$		2.5			$V_{DS} = V_{GS}$, $I_{D} = 18$ mA, $T_{J} = 150$ °C	
Zero Gate Voltage Drain Current	I _{DSS}		2	100	μΑ	V _{DS} = 1700 V, V _{GS} = 0 V	
Gate-Source Leakage Current	I _{GSS}			600	nA	$V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$	
			40	70	mΩ	$V_{GS} = 20 \text{ V}, I_{D} = 50 \text{ A}$	Fig.
Drain-Source On-State Resistance	R _{DS(on)}		80			$V_{GS} = 20 \text{ V}, I_D = 50 \text{ A}, T_J = 150 \text{ °C}$	4,5,6
			24.7			V _{DS} = 20 V, I _{DS} = 50 A	Fig. 7
Transconductance	g_{fs}		23.4		S	V _{DS} = 20 V, I _{DS} = 50 A, T _J = 150 °C	
Input Capacitance	C _{iss}		3455				
Output Capacitance	C _{oss}		171		pF	$V_{GS} = 0 V$ $V_{DS} = 1200 V$	Fig. 17,18
Reverse Transfer Capacitance	C _{rss}		6.7			f = 1 MHz	
C _{oss} Stored Energy	E _{oss}		139		μJ	- V _{AC} = 25 mV	Fig. 16
Effective Output Capacitance (Energy Related)	C _{o(er)}		188		pF	V =0.V.V =0 1200.V	Note: 3
Effective Output Capacitance (Time Related)	C _{o(tr)}		255		pF	$V_{GS} = 0 \text{ V}, V_{DS} = 0 1200 \text{ V}$	
Turn-On Switching Energy (SiC Diode FWD)	E _{on}		0.52		mJ	$V_{DS} = 1200 \text{ V}, V_{GS} = -5/20 \text{ V},$ $I_{D} = 50 \text{ A}, R_{G(ext)} = 2.5 \Omega, L = 99 \mu\text{H},$	Fig. 26, 29b Note 2
Turn Off Switching Energy (SiC Diode FWD)	E _{OFF}		0.43		1113	$T_D = 350 \text{ A}, \text{ K}_{G(ext)} = 2.3 \Omega, L = 99 \text{B} \text{I} \text{I},$ $T_J = 150 \text{ °C, Using SiC Diode as FWD}$	
Turn-On Switching Energy (Body Diode FWD)	E _{on}		2.0		mJ	$V_{DS} = 1200 \text{ V}, V_{GS} = -5/20 \text{ V},$ $I_{D} = 50 \text{ A}, R_{G(ext)} = 2.5 \Omega, L = 99 \mu\text{H},$ $T_{J} = 150 ^{\circ}\text{C}, Using MOSFET as FWD}$	Fig. 26, 29a Note 2
Turn Off Switching Energy (Body Diode FWD)	E _{OFF}		0.31		1113		
Turn-On Delay Time	t _{d(on)}		15			V 1000 V V 7 (00 V	Fig. 27, 29 Note 2
Rise Time	t _r		18		, nc	$V_{DD} = 1200 \text{ V}, V_{GS} = -5/20 \text{ V}$ $I_D = 50 \text{ A},$ $R_{G(ext)} = 2.5 \Omega, \text{ Timing Relative to V}_{DS}$ Inductive Load	
Turn-Off Delay Time	t _{d(off)}		34		ns		
Fall Time	t _f		12			madelive Loud	
Internal Gate Resistance	$R_{G(int)}$		1.3		Ω	f = 1 MHz, V _{AC} = 25 mV	
Gate to Source Charge	$Q_{\rm gs}$		46			V = 1200 V V = -5/20 V	Fig. 12
Gate to Drain Charge	$Q_{\rm gd}$		71		nC	$V_{DS} = 1200 \text{ V}, V_{GS} = -5/20 \text{ V}$ $I_D = 50 \text{ A}$ Per IEC60747-8-4 pg 21	
Total Gate Charge	Q _g		204				

Note (3): $C_{o(er)}$, a lumped capacitance that gives same stored energy as coss while V_{DS} is rising from 0 to 1200 V. $C_{o(tr)}$, a lumped capacitance that gives same charging time as coss while V_{DS} is rising from 0 to 1200 V.

Reverse Diode Characteristics

Parameter	Symbol	Тур.	Max.	Unit	Test Conditions	Note
D: 1 5 1V II	V _{SD}	3.8		· V	V _{GS} = -5 V, I _{SD} = 25 A	Fig. 8, 9, 10 Note 1
Diode Forward Voltage		3.4			$V_{GS} = -5 \text{ V}, I_{SD} = 25 \text{ A}, T_{J} = 150 ^{\circ}\text{C}$	
Continuous Diode Forward Current	I _s		76		$V_{GS} = -5 \text{ V}, T_C = 25 ^{\circ}\text{C}$	Note 1
Diode Pulse Current	I _{S, pulse}		160	A	V_{GS} = -5 V, Pulse Width t_P Limited by T_{jmax}	Note 1
Reverse Recovery Time	t _{rr}	44		ns		
Reverse Recovery Charge	Q _{rr}	1.9		nC	$V_{GS} = -5 \text{ V}, I_{SD} = 50 \text{ A}, V_{R} = 1200 \text{ V}$ $dif/dt = 4030 \text{ A}/\mu \text{s}, T_{J} = 150 \text{ °C}$	
Peak Reverse Recovery Current	I _{rrm}	64		А		
Reverse Recovery Time	t _{rr}	25		ns		
Reverse Recovery Charge	Q _{rr}	2.4		nt i	$V_{GS} = -5 \text{ V}, I_{SD} = 50 \text{ A}, V_{R} = 1200 \text{ V}$ dif/dt = 13450 A/ μ s, $T_{J} = 150 \text{ °C}$	
Peak Reverse Recovery Current	I _{rrm}	166		А		

Thermal Characteristics

Parameter	Symbol	Тур.	Max	Unit	Test Conditions	Note
Thermal Resistance from Junction to Case	$R_{\theta JC}$	0.22	0.37	0.0 %		Fig. 21
Thermal Resistance from Junction to Ambient	$R_{\theta JC}$		40	°C/W		

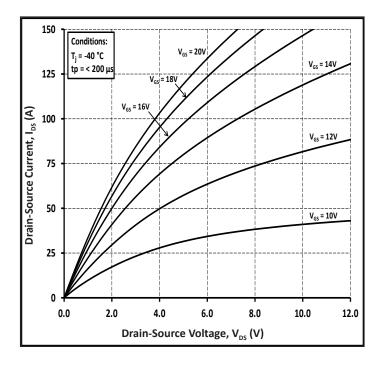


Figure 1. Output Characteristics T₁ = -40 °C

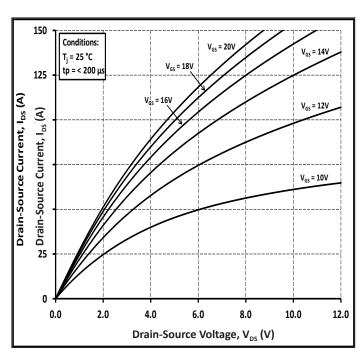


Figure 2. Output Characteristics T₁ = 25 °C

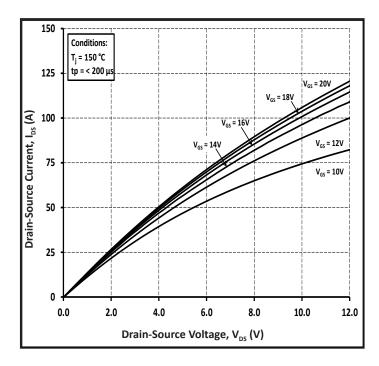


Figure 3. Output Characteristics T_J = 150 °C

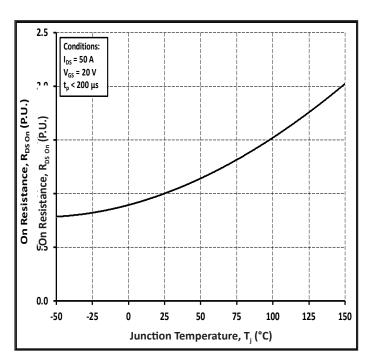


Figure 4. Normalized On-Resistance vs Temperature

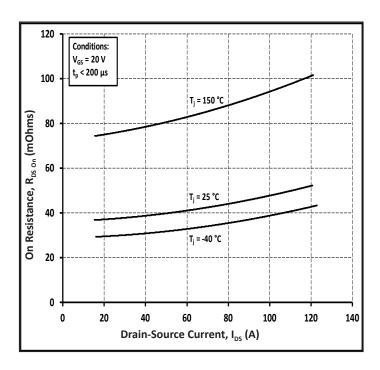


Figure 5. On-Resistance vs Drain Current for Various Temperatures

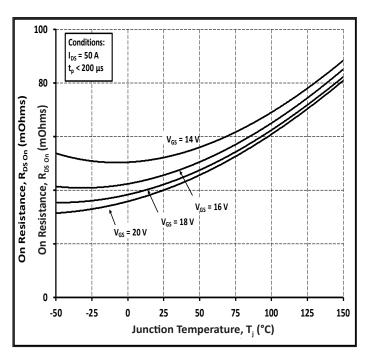


Figure 6. On-Resistance vs Temperature for Various Gate Voltage

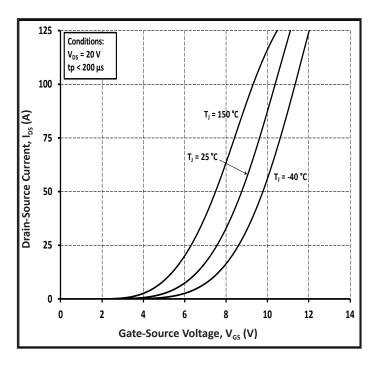
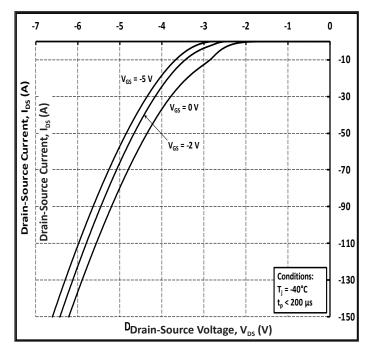
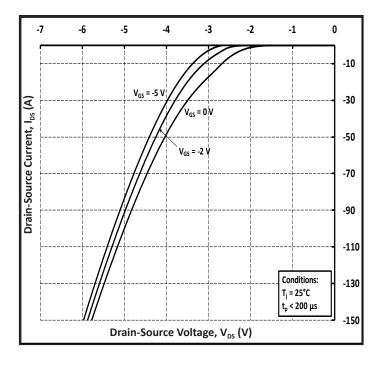
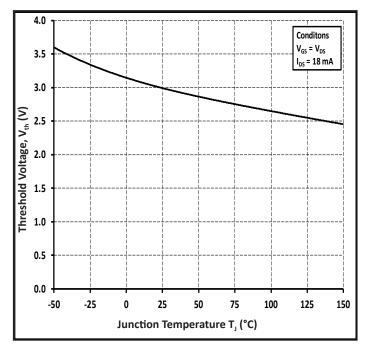


Figure 7. Transfer Characteristic for Various Junction Temperatures


Figure 8. Body Diode Characteristic at -40 °C



-6 -5 -4 -2 -7 -3 -1 0 -10 Drain-Source Current, I_{DS} (A) -30 Drain-Source Current, I_{DS} (A) V_{GS} = 0 V -50 -70 -90 -110 Conditions: -130 T_i = 150°C t_o < 200 μs -150 Drain-Source Voltage, V_{DS} (V)

Figure 9. Body Diode Characteristic at 25 °C

Figure 10. Body Diode Characteristic at 150 °C

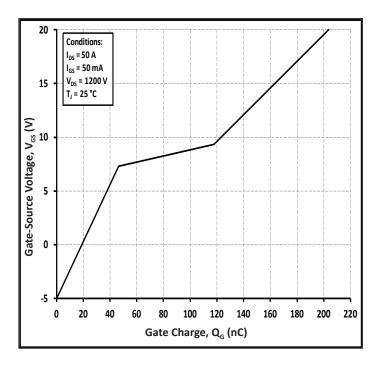


Figure 12. Gate Charge Characteristic

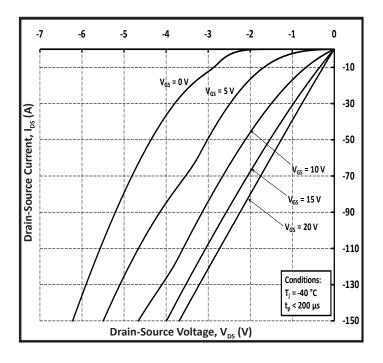


Figure 13. 3rd Quadrant Characteristic at -40 °C

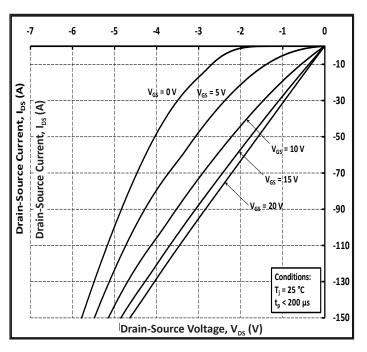


Figure 14. 3rd Quadrant Characteristic at 25 °C

Figure 15. 3rd Quadrant Characteristic at 150 °C

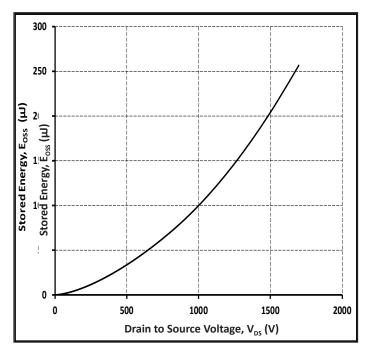


Figure 16. Output Capacitor Stored Energy

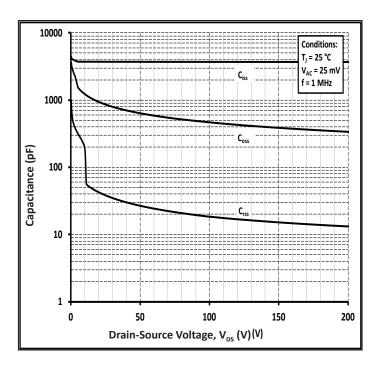


Figure 17. Capacitances vs Drain-Source Voltage (0-200 V)

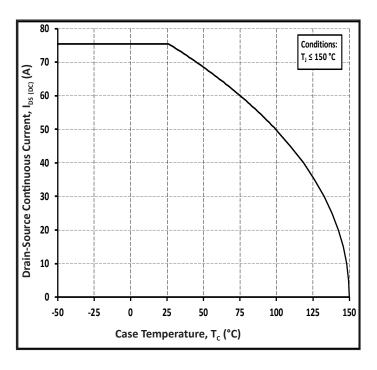


Figure 19. Continuous Drain Current Derating vs Case Temperature

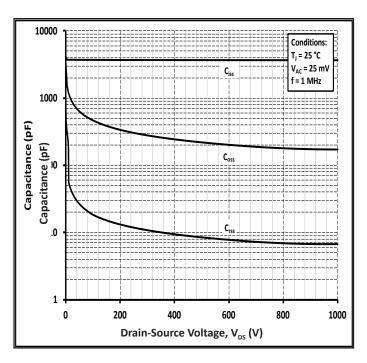


Figure 18. Capacitances vs Drain-Source Voltage (0-1000 V)

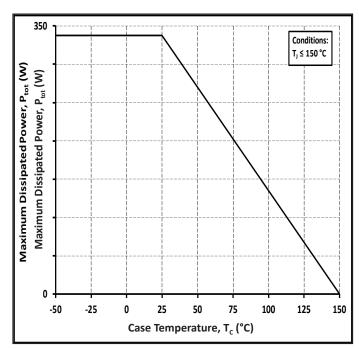


Figure 20. Maximum Power Dissipation Derating vs Case Temperature

Typical Performance

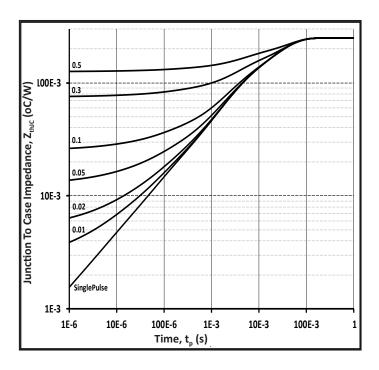


Figure 21. Transient Thermal Impedance (Junction - Case)

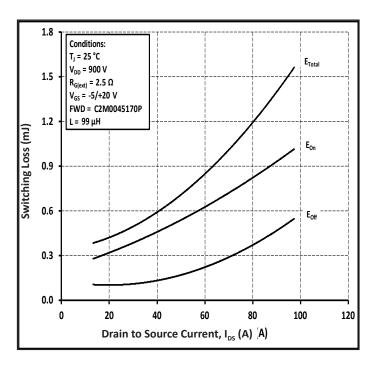
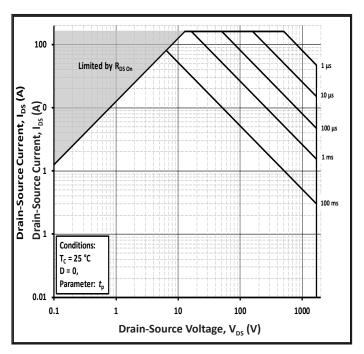



Figure 23. Clamped Inductive Switching Energy vs Drain Current (V_{DD} = 900 V)

9

Figure 22. Safe Operating Area

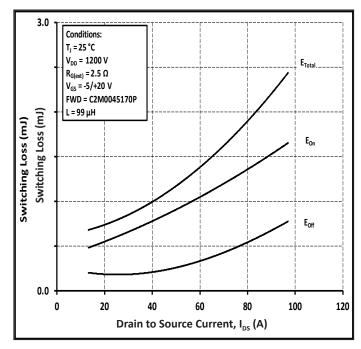


Figure 24. Clamped Inductive Switching Energy vs Drain Current ($V_{DD} = 1200 \text{ V}$)

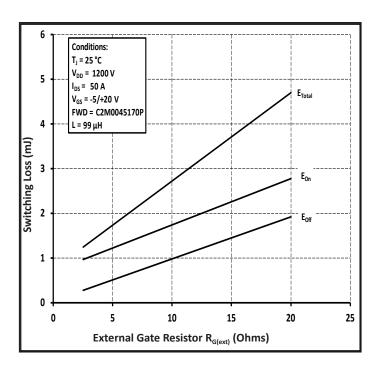


Figure 25. Clamped Inductive Switching Energy vs $R_{\text{G(ext)}}$

Figure 27. Switching Times vs R_{G(ext)}

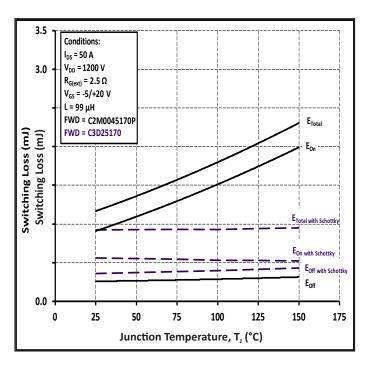


Figure 26. Clamped Inductive Switching Energy vs Temperature

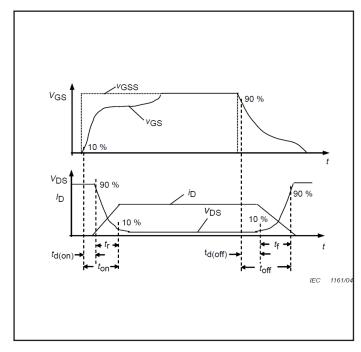


Figure 28. Switching Times Definition

Test Circuit Schematic

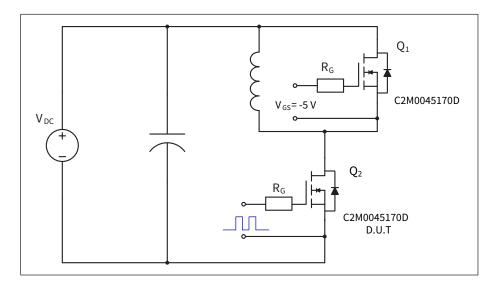
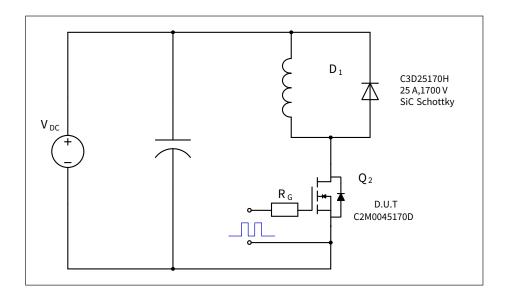
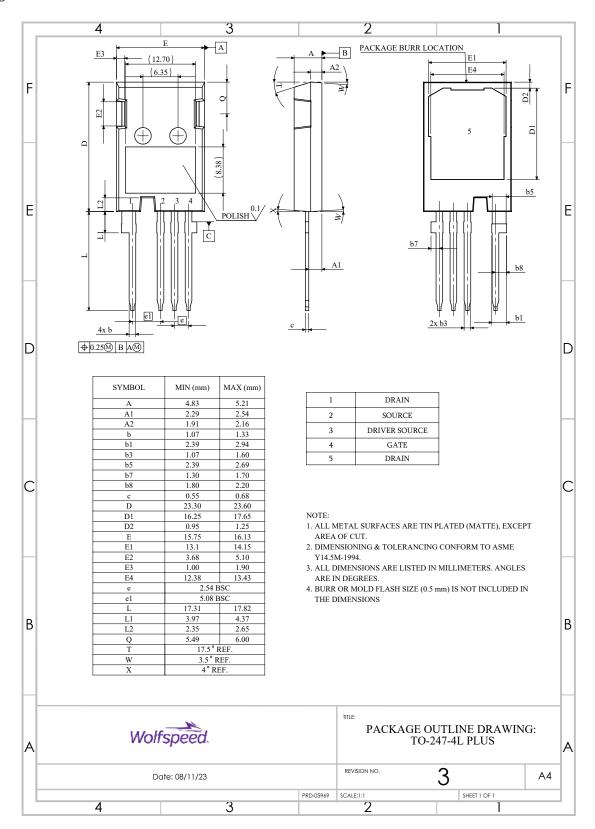
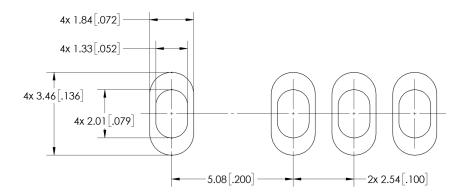


Figure 29a. Clamped Inductive Switching Test Circuit Using MOSFET Intristic Body Diode


Figure 29b. Clamped Inductive Switching Test Circuit Using SiC Schottky Diode

Package Dimensions

Package: TO-247-4L

Recommended Solder Pad Layout

Part Number	Package	Marking
C2M0045170P	TO-247-4L	C2M0045170P

Revision History

Current Revision	Date of Release	Description of Changes
2	May-2022	Initial Release
3	October-2023	Wolfspeed branding, POD, Package image, Solder Temp conditions note changed to JEDEC standard
4	November-2023	Corrected POD A1, D2, and L

Notes & Disclaimer

This document and the information contained herein are subject to change without notice. Any such change shall be evidenced by the publication of an updated version of this document by Wolfspeed. No communication from any employee or agent of Wolfspeed or any third party shall effect an amendment or modification of this document. No responsibility is assumed by Wolfspeed for any infringement of patents or other rights of third parties which may result from use of the information contained herein. No license is granted by implication or otherwise under any patent or patent rights of Wolfspeed.

Notwithstanding any application-specific information, guidance, assistance, or support that Wolfspeed may provide, the buyer of this product is solely responsible for determining the suitability of this product for the buyer's purposes, including without limitation for use in the applications identified in the next bullet point, and for the compliance of the buyers' products, including those that incorporate this product, with all applicable legal, regulatory, and safety-related requirements.

This product has not been designed or tested for use in, and is not intended for use in, applications in which failure of the product would reasonably be expected to cause death, personal injury, or property damage, including but not limited to equipment implanted into the human body, life-support machines, cardiac defibrillators, and similar emergency medical equipment, aircraft navigation, communication, and control systems, air craft power and propulsion systems, air traffic control systems, and equipment used in the planning, construction, maintenance, or operation of nuclear facilities.

RoHS Compliance

The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/EC (RoHS2), as implemented January 2, 2013. RoHS Declarations for this product can be obtained from your Wolfspeed representative or from the Product Documentation sections of www.wolfspeed.com.

REACh Compliance

REACh substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future, please contact your Wolfspeed representative to ensure you get the most up-to-date REACh SVHC Declaration. REACh banned substance information (REACh Article 67) is also available upon request.

Contact info:

4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 www.wolfspeed.com/power

© 2023 Wolfspeed, Inc. All rights reserved. Wolfspeed® and the Wolfstreak logo are registered trademarks and the Wolfspeed logo is a trademark of Wolfspeed, Inc. PATENT: https://www.wolfspeed.com/legal/patents

The information in this document is subject to change without notice.