
1700 V, 8.0 mΩ, Silicon Carbide, Half-Bridge Module

$\mathbf{V}_{\mathtt{DS}}$	1700 V
I _{DS}	300 A

Technical Features

- Industry Standard 62mm Footprint
- Ultra Low Loss, High-Frequency Operation
- Zero Reverse Recovery from Diodes
- Zero Turn-off Tail Current from MOSFET
- Normally-off, Fail-safe Device Operation
- Copper Baseplate and Aluminum Nitride Insulator

Applications

- HF Resonant Converters/Inverters
- Solar and Wind Inverters
- UPS and SMPS
- Motor Drive
- Traction

System Benefits

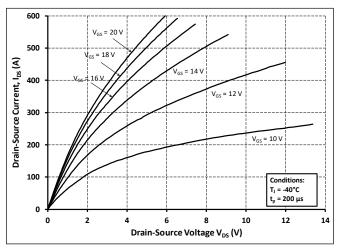
- Enables Compact and Lightweight Systems
- High Efficiency Operation
- Mitigates Over-voltage Protection
- Reduced Thermal Requirements
- Reduced System Cost

Maximum Parameters (Verified by Design)

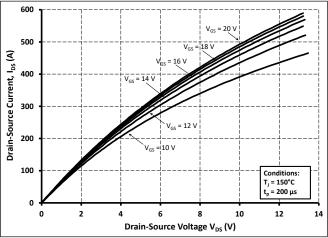
Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Conditions	Note
Drain-Source Voltage	V _{DS}			1700			
Gate-Source Voltage, Maximum Values	V _{GS max}	-10		+25	V		
Gate-Source Voltage, Recommended Values	V_{GSop}	-5		+20			
DC Continuous Dusin Comment			325			$V_{GS} = 20 \text{ V}, T_C = 25 ^{\circ}\text{C}$	F:- 26
DC Continuous Drain Current	I _D		225			V _{GS} = 20 V, T _C = 90 °C	Fig. 26
DCC Davis Comment (Davis Divide)			556		A	V _{GS} = -5 V, T _C = 25 °C	
DC Source-Drain Current (Body Diode)	I _{SD BD}		353			V _{GS} = -5 V, T _C = 90 °C	
Maximum Pulsed Drain-Source Current	I _{D (pulsed)}			900		Pulse width limited by T _{VJ(max)}	
Maximum Virtual Junction Temperature under Switching Conditions	T _{VJ op}	-40		150	°C		

MOSFET Characteristics (Per Position) (T_{VJ} = 25 °C unless otherwise specified)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Conditions	Note
Drain-Source Breakdown Voltage	V _{(BR)DSS}	1700			V	V _{GS} = 0 V, I _{DS} = 2 mA	Fig. 29
Gate Threshold Voltage	$V_{GS(th)}$	1.8	2.5		V	V _{DS} = V _{GS} , I _{DS} = 104 mA	Fig. 7
7. 6. 1 1 1 2 3 6 1			0.7	2		V _{GS} = 0 V, V _{DS} = 1700 V	
Zero Gate Voltage Drain Current	I _{DSS}		1.5	4	mA	V _{GS} = 0 V, V _{DS} = 1700 V, T _{VJ} = 150°C	
Gate-Source Leakage Current	I _{GSS}		1	600	nA	V _{GS} = 25 V, V _{DS} = 0 V	
Drain-Source On-State Resistance			8.0	10.0		$V_{GS} = 20 \text{ V}, I_D = 300 \text{ A}$	Fig. 4
(MOSFET Only)	R _{DS(on)}		16.2	20.0	mΩ	V _{GS} = 20 V, I _D = 300 A, T _{VJ} = 150 °C	Fig. 5 Fig. 6
			133			V _{DS} = 20 V, I _D = 300 A	F: 0
Transconductance	g _{fs}		131		S	$V_{DS} = 20 \text{ V}, I_{D} = 300 \text{ A}, T_{VJ} = 150 ^{\circ}\text{C}$	Fig. 8
Turn-On Switching Energy	Eon		13.0			$V_{DD} = 900 \text{ V}, I_D = 300 \text{ A},$ $V_{GS} = -5 \text{ V}/+20 \text{ V},$	
					mJ	$R_{G(ON)} = 2.5 \Omega, R_{G(OFF)} = 2.5 \Omega,$	Fig. 22
Turn-Off Switching Energy	E _{off}		10.0			L = 77 μH T _{VJ} = 150 °C	
						Note: IEC 60747-8-4 Definitions	
Internal Gate Resistance	R _{G(int)}		3.7		Ω	f = 1 MHz, V _{AC} = 25 mV	
Input Capacitance	C _{iss}		20		,,,		
Output Capacitance	C _{oss}		2.5		nF	V _{DS} = 1000 V, V _{AC} = 25 mV f = 200 kHz	Fig. 16 Fig. 17
Reverse Transfer Capacitance	C _{rss}		80		pF	1 - 200 KHZ	
Gate to Source Charge	Q _{GS}		273				
Gate to Drain Charge	Q_{GD}		324		nC	$V_{DS} = 900 \text{ V}, V_{GS} = -5 \text{ V}/+20 \text{ V},$ $I_D = 300 \text{ A}, \text{ Per JEDED24 pg 27}$	Fig. 15
Total Gate Charge	Q _G		1076			10 - 300 A, 1 el 3LDLD24 pg 21	
Turn-on Delay Time	t _{d(on)}		105			$V_{DD} = 900V, V_{GS} = -5/+20V,$	
Rise Time	t _r		72		1	$I_D = 300 \text{ A}, R_{G(ext)} = 2.5 \Omega,$	Fig. 23
Turn-off Delay Time	t _{d(off)}		211		ns	Timing relative to V _{DS} Note: IEC 60747-8-4, pg 83	
Fall Time	t _f		56			Inductive load	
MOSFET Thermal Resistance, Junction to Case	R _{th-JCM}		0.067	0.071	°C/W		Fig. 27


Diode Characteristics (Per Position) (T_{VJ} = 25 °C unless otherwise specified)

Parameter	Symbol	Min.	Тур.	Мах.	Unit	Test Conditions	Notes
Pady Diada Farward Valtaga	V		1.7	2.0	V	$V_{GS} = 0 \text{ V}, I_{SD} = 300 \text{ A}$	Fig. 10
Body Diode Forward Voltage	V_{SD}		2.2	2.5	V	$V_{GS} = 0 \text{ V}, I_{SD} = 300 \text{ A}, T_{VJ} = 150 ^{\circ}\text{C}$	Fig. 11
Total Capacitive Charge	Qc		4.4		μС	$I_{SD} = 300 \text{ A}, V_{DS} = 900 \text{ V}, T_{VJ} = 25^{\circ}\text{C},$ $di_{SD}/dt = 9 \text{ kA}/\mu\text{s}, V_{GS} = -5 \text{ V}$	
DIODE Thermal Resistance, Junction to Case	R _{th-JCD}		0.060	0.065	°C/W		Fig. 28


Module Physical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Stray Inductance	L _{Stray}		15		nH	Between terminals 2 & 3
Case Temperature	Tc	-40		125	°C	
Mounting Torque	Ms		5.0		N-m	To heatsink and terminals
Weight	W		300		g	
Case Isolation Voltage	V _{Isol}	5.0			kV	AC, 50 Hz, 1 minute
Clearance Distance		9				Terminal to terminal
Creepage Distance		30			mm	Terminal to terminal
		40				Terminal to baseplate

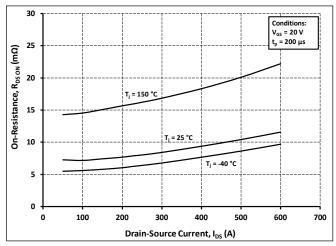

4

Figure 1. Output Characteristics for T_{VJ} = 40 °C

Figure 3. Output Characteristics for T_{VJ} = 150 °C

Figure 5. On-Resistance vs. Drain Current For Various Temperatures

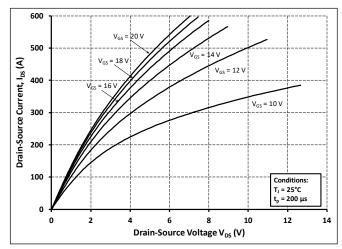


Figure 2. Output Characteristics for T_{VJ} = 25 °C

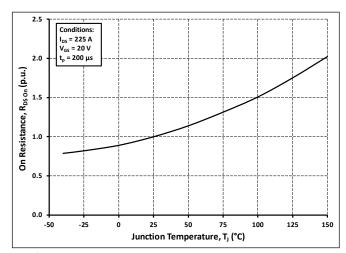
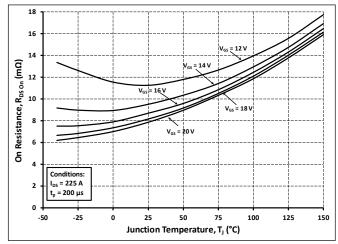
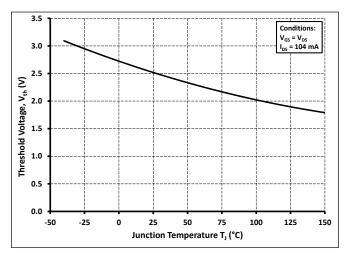
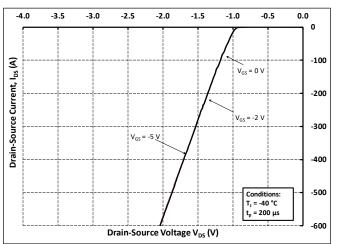
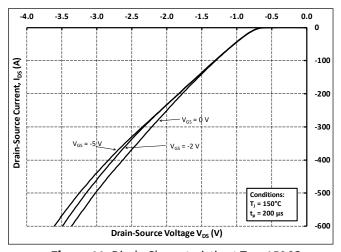
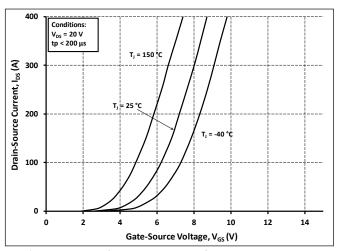



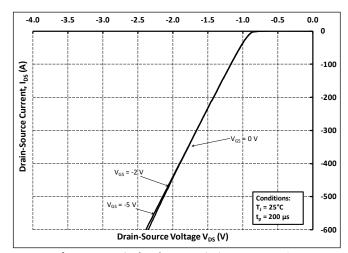
Figure 4. Normalized On-Resistance vs. Temperature

Figure 6. On-Resistance vs. Temperature for Various Gate-Source Voltage

5


Figure 7. Threshold Voltage vs. Temperature


Figure 9. Diode Characteristic at T_{VJ} = -40 °C

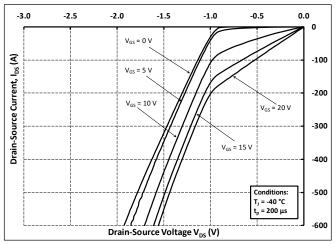

Figure 11. Diode Characteristic at $T_{VJ} = 150 \, ^{\circ}\text{C}$

Figure 8. Transfer Characteristic for Various Junction Temperatures

Figure 10. Diode Characteristic at $T_{VJ} = 25 \,^{\circ}\text{C}$

Figure 12. 3^{rd} Quadrant Characteristic at $T_{VJ} = -40$ °C

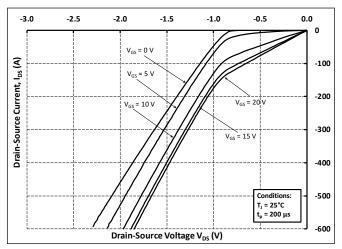


Figure 13. 3rd Quadrant Characteristic at T_{VJ} = 25 °C

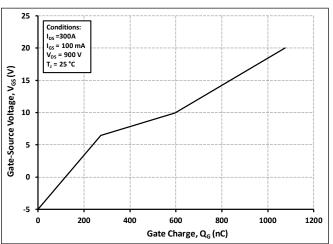


Figure 15. Gate Charge Characteristics

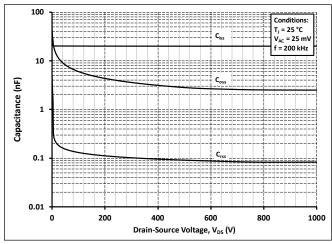


Figure 17. Capacitances vs. Drain-Source Voltage (0 - 1 kV)

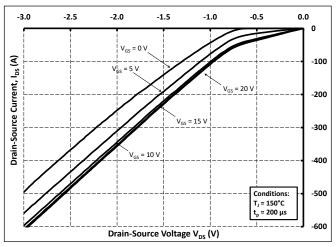


Figure 14. 3rd Quadrant Characteristic at T_{VJ} = 150 °C

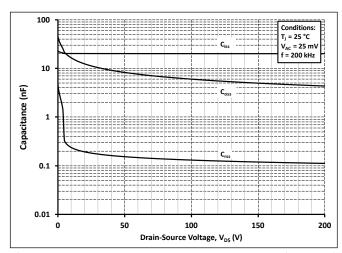


Figure 16. Capacitances vs. Drain-Source Voltage (0 - 200 V)

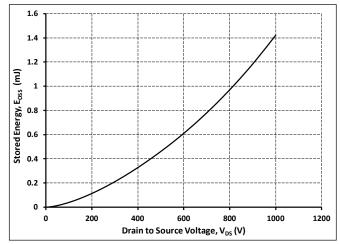


Figure 18. Output Capacitor Stored Energy

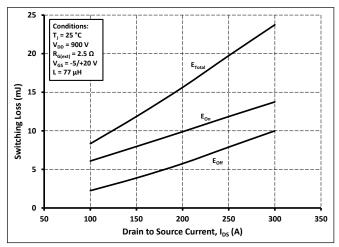


Figure 19. Inductive Switching Energy vs. Drain Current For V_{DS} = 900 V, R_G = 2.5 Ω

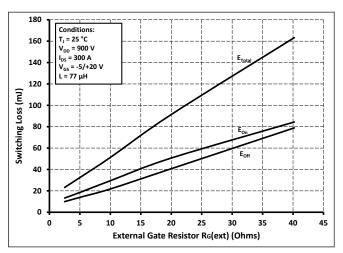


Figure 21. Inductive Switching Energy vs. $R_{G(ext)}$

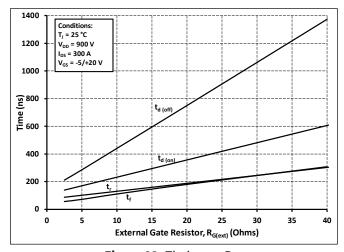


Figure 23. Timing vs. $R_{G(ext)}$

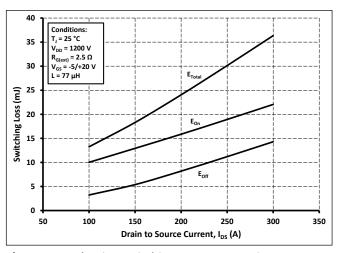


Figure 20. Inductive Switching Energy vs. Drain Current For $V_{DS} = 1200 \text{ V}, R_G = 2.5 \Omega$

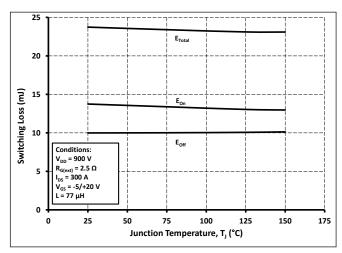


Figure 22. Inductive Switching Energy vs. Temperature

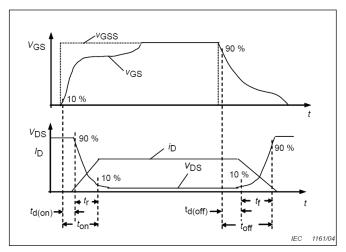
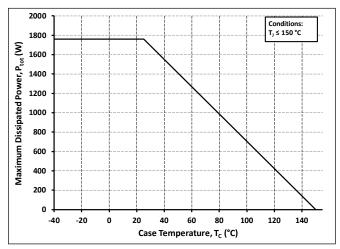



Figure 24. Resistive Switching Time Description

Timing Characteristics

Figure 25. Maximum Power Dissipation (MOSFET) Derating vs. Case Temperature

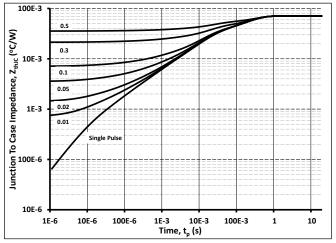


Figure 27. MOSFET Junction to Case Thermal Impedance

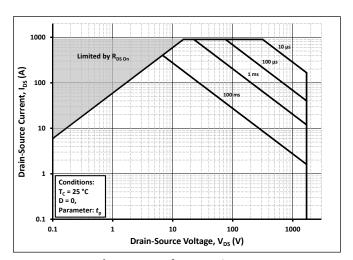
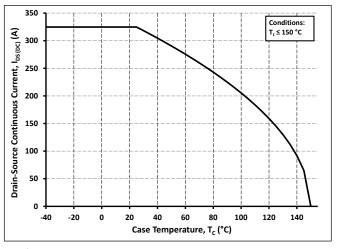
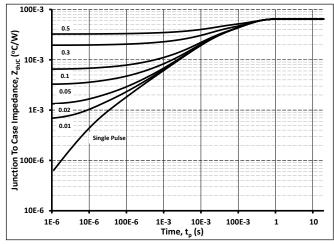
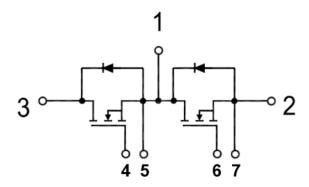
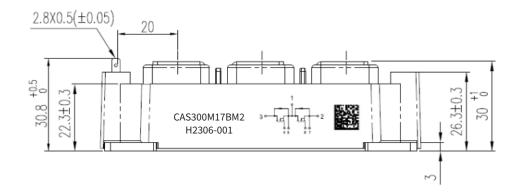
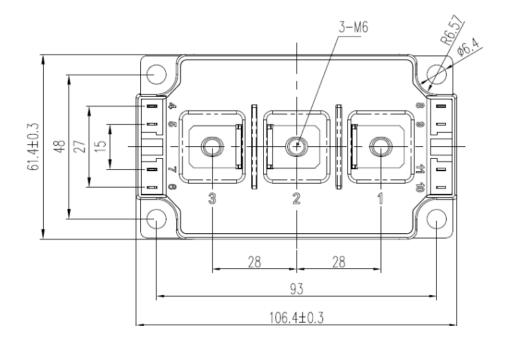



Figure 29. Safe Operating Area

Figure 26. Continuous Drain Current Derating vs Case Temperature


Figure 28. Diode Junction to Case Thermal Impedance

Package Dimension (mm)

9

Supporting Links & Tools

Evaluation Tools & Support

- KIT-CRD-CIL17N-BM: Dynamic Performance Evaluation Board for the 62 mm Module
- SpeedFit 2.0 Design Simulator™
- Technical Support Forum

Dual-Channel Gate Driver Board

- CGD1700HB2P-BM2: Dual Channel Differential Isolated Half Bridge Gate Driver Board
- CGD12HB00D: Differential Transceiver Daughter Board Companion Tool for Differential Gate Drivers

Application Notes

- 62 mm Module Mounting Guide
- 62 mm Module Thermal Interface Material Guide

Notes & Disclaimer

This document and the information contained herein are subject to change without notice. Any such change shall be evidenced by the publication of an updated version of this document by Cree. No communication from any employee or agent of Cree or any third party shall effect an amendment or modification of this document. No responsibility is assumed by Cree for any infringement of patents or other rights of third parties which may result from use of the information contained herein. No license is granted by implication or otherwise under any patent or patent rights of Cree.

Notwithstanding any application-specific information, guidance, assistance, or support that Cree may provide, the buyer of this product is solely responsible for determining the suitability of this product for the buyer's purposes, including without limitation for use in the applications identified in the next bullet point, and for the compliance of the buyers' products, including those that incorporate this product, with all applicable legal, regulatory, and safety-related requirements.

This product has not been designed or tested for use in, and is not intended for use in, applications in which failure of the product would reasonably be expected to cause death, personal injury, or property damage, including but not limited to equipment implanted into the human body, life-support machines, cardiac defibrillators, and similar emergency medical equipment, aircraft navigation, communication, and control systems, air craft power and propulsion systems, air traffic control systems, and equipment used in the planning, construction, maintenance, or operation of nuclear facilities.

RoHS Compliance

The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/EC (RoHS2), as implemented January 2, 2013. RoHS Declarations for this product can be obtained from your Cree representative or from the Product Documentation sections of www.cree.com.

REACh Compliance

REACh substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future, please contact your Cree representative to ensure you get the most up-to-date REACh SVHC Declaration. REACh banned substance information (REACh Article 67) is also available upon request.

Contact info:

4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 www.wolfspeed.com/power