DATASHEET # EHHD036A0F HAMMERHEAD* Series; DC-DC Converter Power Modules 18-75V_{dc} Input; 3.3V_{dc}, 36A, 120W Output ### Description The EHHD036A0F [HAMMERHEAD*] Series, eighth -brick, low-height power modules are isolated dc-dc converters which provide a single, precisely regulated output voltage over an ultra wide input voltage range of 18-75V_{dc}. The EHHD036A0F provides 3.3V_{dc} nominal output voltage rated for 36A_{dc} output current. The module incorporates ABB's vast heritage for reliability and quality, while also using the latest in technology, and component and process standardization to achieve highly competitive cost. The open frame module construction, available in through-hole packaging, enable designers to develop cost and space efficient solutions. The module achieves typical full load efficiency greater than 90% at $V_{IN}=24V_{dc}$ and V_{IN} =48 V_{dc} . Standard features include remote On/Off, remote sense, output voltage adjustment, overvoltage, overcurrent and overtemperature protection. An optional heat plate allows for external standard, eighth-brick heat sink attachment to achieve higher output current in high temperature applications. ### **Applications** - Distributed Power Architectures - Wireless Networks - Enterprise Networks including Power over Ethernet (PoE) - Industrial Equipment ### **Options** - Negative Remote On/Off logic (preferred) - Over current/Over temperature/Over voltage protections (Auto-restart) (preferred) - 1/8th Brick Heat plate for 1/8th heatsinks - 1/4th Brick heat plate with unthreaded inserts ### **Features** - Compliant to RoHS II EU "Directive 2011/65/EU" and amended Directive (EU) 2015/863. - Compliant to REACH Directive (EC) No 1907/2006 - Flat and high efficiency curve - Industry standard, DOSA compliant footprint 58.4mm x 22.8mm x 8.9mm (2.30 in x 0.9 in x 0.35 in) - Ultra wide input voltage range: 18-75 V_{dc} - Tightly regulated output - Remote sense - Output Voltage adjust: 90% to 110% of V_{O,nom} - Constant switching frequency - Positive remote On/Off logic - Output overcurrent and overvoltage protection - Overtemperature protection - Wide operating temperature range (-40°C to 85°C) - Suitable for cold wall cooling using suitable Gap Pad applied directly to top side of module - ANSI/UL* 62368-1 and CAN/CSA† C22.2 No. 62368-1 Recognized, DIN VDE[‡] 0868-1/A11:2017 (EN62368-1:2014/A11:2017) - CE mark meets 2014/35/EU directive§ - Meets the voltage and current requirements for ETSI 300-132- 2 and complies with and licensed for Basic insulation rating - 2250 Vdc Isolation tested in compliance with IEEE 802.3" PoE standards - ISO**9001 and ISO 14001 certified manufacturing facilities #### FOOTNOTES ^{*} Trademark of ABB Company [#] UL is a registered trademark of Underwriters Laboratories, Inc. [†] CSA is a registered trademark of Canadian Standards Association. [‡] VDE is a trademark of Verband Deutscher Elektrotechniker e.V. [§] This product is intended for integration into end-user equipment . All of the required procedures of end-use equipment should be followed. [¤] IEEE and 802 are registered trademarks of the Institute of Electrical and Electronics Engineers, Incorporated. ^{**} ISO is a registered trademark of the International Organization of Standards ### **Technical Specifications** ### **Absolute Maximum Ratings** Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are absolute stress ratings only, functional operation of the device is not implied at these or any other conditions in excess of those given in the operations sections of the data sheet. Exposure to absolute maximum ratings for extended periods can adversely affect the device reliability. | Parameter | Device | Symbol | Min | Max | Unit | |--|---------|----------------|------|------|----------| | Input Voltage | | | | | | | Continuous | All | V_{IN} | -0.3 | 80 | V_{dc} | | Transient operational (≤100ms) | All | $V_{IN,trans}$ | -0.3 | 100 | V_{dc} | | Operating Ambient Temperature | All | T _A | -40 | 85 | °C | | Maximum Heat Plate Operating Temperature | -18H, H | T _c | -40 | 105 | °C | | (see Thermal Considerations section) | | | | | | | Storage Temperature | All | T_{stg} | -55 | 125 | °C | | Altitude* | All | | | 4000 | m | | I/O Isolation Voltage (100% factory Hi-Pot tested) | All | - | - | 2250 | V_{dc} | ^{*} For higher altitude applications, contact your ABB Sales Representative for alternative conditions of use. ### **Electrical Specifications** Unless otherwise indicated, specifications apply over all operating input voltage, resistive load, and temperature conditions. | Parameter | Device | Symbol | Min | Тур | Max | Unit | |--|--------|--------------------------|-----|-----------|-----|-------------------| | Operating Input Voltage | All | V_{IN} | 18 | 24/48 | 75 | V_{dc} | | Maximum Input Current (V _{IN} = V _{IN} , _{min} to V _{IN} , _{max} , V _O = V _O , set, I _O =I _O , _{max}) | All | I _{IN} | | 7.3 | 7.8 | A_{dc} | | Input No Load Current $V_{IN} = 24V_{dc}$, (I _O = 0, module enabled) $V_{IN} = 48V_{dc}$, (I _O = 0, module enabled) | All | I _{IN,No} load | | 120
80 | | mA | | Input Stand-by Current
(V _{IN} = 24 to 48 V module disabled) | All | I _{IN,stand-by} | | 5 | 11 | mA | | Inrush Transient | All | l ² t | | | 0.5 | A ² s | | Input Reflected Ripple Current, peak-to-peak (5Hz to 20MHz, 12µH source impedance; V _{IN,min} to V _{IN,mix} ; Io=I _{Omax} ; seeTest configuration section) | All | | | 30 | | mA _{p-p} | | Input Ripple Rejection (120Hz) | All | | | 60 | | dB | ### CAUTION: This power module is not internally fused. An input line fuse must always be used. This power module can be used in a wide variety of applications, ranging from simple standalone operation to being part of complex power architecture. To preserve maximum flexibility, internal fusing is not included; however, to achieve maximum safety and system protection, always use an input line fuse. The safety agencies require a fast-acting fuse with a maximum rating of 15A (see Safety Considerations section). Based on the information provided in this data sheet on inrush energy and maximum dc input current, the same type of fuse with a lower rating can be used. Refer to the fuse manufacturer's data sheet for further information. ### **Electrical Specifications (continued)** Unless otherwise indicate, specifications apply at V_{IN} = 48 V_{dc} received load T_A = 25°C condition. | Parameter | Device | Symbol | Min | Тур | Max | Unit | |--|--------|----------------------|-------|------|--------|-----------------------| | Nominal Output Voltage Set-point | | | | | | | | V_{IN} = 24V to 48V I_0 = $I_{O, max}$, T_A =25°C) | All | V_{O} , set | 3.25 | 3.3 | 3.36 | V_{dc} | | Output Voltage | | | | | | | | (Over all operating input voltage, resistive load, and temperature conditions until end of life) | All | Vo | - 3.0 | - | +3.0 | $\%$ $V_{O, set}$ | | Adjustment Range (*Vin > 20V) Selected by external resistor | All | V _{O, adj} | -10 | | +10* | % V _{O, set} | | Output Regulation | | | | | | | | Line (V _{IN} =V _{IN} , min to V _{IN, max}) | All | | _ | _ | ±0.2 | % V _{O, set} | | Load ($I_0 = I_{0, min}$ to $I_{0, max}$) | All | | _ | _ | ±0.2 | % V _{O, set} | | Temperature (T _{ref} =T _A , min to T _A , _{max}) | All | | - | - | ±1.5 | % V _{O, set} | | Output Ripple and Noise o on Nominal Output | | | | | | | | Measured with 10uF Tantalum 1uF ceramic $(V_{IN}=24 \text{ to } 48, I_0=80\% I_{O, max}, T_A=25)$ | | | | | | | | RMS (5Hz to 20MHz bandwidth) | All | | - | 10 | | mV_{rms} | | Peak-to-Peak (5Hz to 20MHz bandwidth) | All | | - | 50 | | mV_{pk-pk} | | External Capacitance | All | C _O , max | 0 | - | 10,000 | μF | | Output Current | All | Io | 0 | | 36 | A_{dc} | | Output Current Limit Inception (Hiccup Mode) | | | | | | | | $(V_0=90\% \text{ of } V_{O,set})$ | 3.3 | $I_{O, lim}$ | 39.6 | 43 | | A_{dc} | | Output Short-Circuit Current | A.II | | | 1.0 | | | | (V _o ≤250mV) (Hiccup Mode) | All | I _{O, s/c} | | 1.2 | | A_{rms} | | Efficiency | | | | | | | | $V_{IN}=24V$, $T_A=25$ °C, $I_O=24A$, $V_O=3.3V$ | All | η | | 92 | | % | | V _{IN} =48V, T _A =25°C, I _O =24A, VO = 3.3V | All | η | | 91.5 | | % | | Switching Frequency | All | f_{sw} | | 380 | | kHz | | Dynamic Load Response | | | | | | | | $(dI_o/dt=0.1A/\mu s; V_{IN}=24V \text{ or } 48V; T_A=25^{\circ}C; C_O>100\mu F)$ | | | | | | | | Load Change from I_o = 50% to 75% or 25% to 50% of $I_{o,max}$ | | | | | | | | Peak Deviation | All | V_{pk} | - | 3 | - | $\% V_{O,set}$ | | Settling Time (Vo<10% peak deviation) | All | t _s | - | 800 | - | μs | ### **Isolation Specifications** | Parameter | Device | Symbol | Min | Тур | Max | Unit | |--|--------|------------------|-----|------|------|----------| | Isolation Capacitance | All | C_iso | - | 1000 | - | рF | | Isolation Resistance | All | R _{iso} | 10 | - | - | ΜΩ | | I/O Isolation Voltage (100% factory Hi-pot tested) | All | All | - | - | 2250 | V_{dc} | ### **General Specifications** | Parameter | Device | Symbol | Min | Тур | Max | Unit | |---|--------|--------|-----|-----------|-----|------------------------| | Calculated Reliability based upon Telcordia SR-332 Issue 2: Method I Case 3 (I_0 =80% $I_{0, max}$, T_A =40°C, airflow = 200 Ifm, 90% confidence) | | FIT | | 105.7 |
| 10 ⁹ /Hours | | | | MTBF | | 9,462,810 | | Hours | | Weight (Open Frame) | All | | | 23(0.8) | | g (oz.) | | Weight (with Heatplate) | All | | | 37(1.3) | | g (oz.) | ### **Feature Specifications** Unless otherwise indicated, specifications apply over all operating input voltage, resistive load, and temperature conditions. See Feature Descriptions for additional information. | Remote On/Off Signal Interface Vns-Vns,min to Vns,min 2 open collector or equivalent, Signal reference to Vns-truminal) Negative Logic device code suffix '1" Logic Low = module On, Logic High = module Off Positive Logic; No device code suffix required Logic Low = module Off, Logic High = module Off Logic Low = module Off, Logic High = module Off Logic Low = module Off, Logic High = module Off All Vns,votf -0.7 -0.06 Vns V | Parameter | Device | Symbol | Min | Тур | Max | Unit | |--|---|--------|---------------------|------|------|------|----------------| | Signal referenced to V _{N*} terminal) Negative Logic: device code suffix "1" Logic Low = module On Logic High = module Off Positive Logic: No device code suffix required Logic Low = module Off, Logic High = module On Logic Low = module Off, Logic High = module On Logic Low = Remote On/Off Current All Von/off -0.7 -0.6 Vdc Logic High Voltage All Von/off -0.7 -0.6 Vdc Logic High Voltage All Von/off -0.7 -0.6 Vdc Logic High Voltage Vdc Vdc Logic High Voltage Vdc | Remote On/Off Signal Interface | | | | | | | | Negative Logic: device code suffix "1" Logic Low = module Off, Logic High = module Off | (V_{IN} = V_{IN} , $_{min}$ to V_{IN} , $_{max}$; open collector or equivalent, | | | | | | | | Logic Low = module On, Logic High = module Off Positive Logic: No device code suffix required Logic Low = module Off, Logic High = module On Logic Low = module Off, Logic High = module On Logic Low = module Off (Logic High = module On Logic Low = On/Off Voltage All V _{anylaff} -0.7 -0.06 V _{dc} Logic High Voltage (Typ = Open Collector) All V _{anylaff} -0.7 -0.06 V _{dc} Logic High Voltage (Typ = Open Collector) All V _{anylaff} -0.7 -0.06 V _{dc} Logic High Voltage (Typ = Open Collector) All V _{anylaff} -0.7 -0.06 V _{dc} Logic High maximum allowable leakage current All I _{anylaff} -0.7 -0.06 V _{dc} Logic High maximum allowable leakage current All I _{anylaff} -0.7 -0.06 V _{dc} V _{dc} Logic High maximum allowable leakage current All I _{anylaff} -0.7 -0.06 V _{dc} | Signal referenced to V_{IN} - terminal) | | | | | | | | Positive Logic: No device code suffix required Logic Low = module Off, Logic High = module On | Negative Logic: device code suffix "1" | | | | | | | | Logic Low - module Off, Logic High = module On Logic Low - Remote On/Off Current All Ion/reff -0.7 -0.6 Vox Logic Low - On/Off Voltage All Vox Vox Vox Vox Vox Logic Low - On/Off Voltage All Vox | Logic Low = module On, Logic High = module Off | | | | | | | | Logic Low - Remote On/Off Current All Vor/off - 0.15 MA | Positive Logic: No device code suffix required | | | | | | | | Logic Low - On/Off Voltage | Logic Low = module Off, Logic High = module On | | | | | | | | Logic High Voltage (Typ=Open Collector) | Logic Low - Remote On/Off Current | All | I _{on/off} | - | - | 0.15 | mA | | Logic High maximum allowable leakage current All Ion/off - - 20 μA Turn-On Delay and Rise Times (Io-To,max, Vin-Yell, nom, TA = 25°C) Sea 1: Input power is applied for at least Isecond, and then the On/Off input is set from OFF to ON All Total | Logic Low - On/Off Voltage | All | $V_{on/off}$ | -0.7 | - | 0.6 | V_{dc} | | Turn-On Delay and Rise Times (lo=lo, max, V _{IN} =V _{IN, nom} , T _A = 25°C) Case 1: Input power is applied for at least 1second, and then the On/Off input is set from OFF to ON All T _{delay} - 35 - 35 - msec Or, Off input is set to (Module ON) and then input power is applied (T _{delay} = on/off pin transition until V₀ = 10% of V₀, set) All T _{delay} - 35 - msec Case 2: On/Off input is set to (Module ON) and then input power is applied (T _{delay} = from instant at which V _{IN} = V _{IN} until V₀ = 10% of V₀, set) All T _{rise} - 10 - 35 - msec Output Voltage Rise time (time for Vo to rise from 10% of V₀, set) 0 90% of V₀, set) All T _{rise} - 10 - msec Output Voltage Overshoot - Startup lo=lo, max V _{IN} = V _{IN min} to V _{IN max} T _A =25°C All V _{SENSE} 10 % V₀, set Remote Sense Range All V _{SENSE} 10 % V₀, set Output Overvoltage Protection¹ All V _{O, limit} 4.0 - 5.5 V _{dc} Overtemperature Protection – Hiccup Auto Restart Open Frame Frame Heat Plate Tref 135 °C Input Undervoltage All V _{UVLO} - 17.5 V _{dc} V _{dc} Lockout Turn-on Threshold All V _{UVLO} - 17.5 V _{dc} V _{dc} Input Overvoltage Lockout All V _{UVLO} - 17.5 V _{dc} V _{dc} Input Overvoltage Lockout All V _{UVLO} - 17.5 V _{dc} V _{dc} Input Overvoltage Lockout All V _{UVLO} - 17.5 V _{dc} <td>Logic High Voltage (Typ=Open Collector)</td> <td>All</td> <td>$V_{on/off}$</td> <td>2.5</td> <td>5</td> <td>6.7</td> <td>V_{dc}</td> | Logic High Voltage (Typ=Open Collector) | All | $V_{on/off}$ | 2.5 | 5 | 6.7 | V_{dc} | | Company Comp | Logic High maximum allowable leakage current | All | I _{on/off} | - | - | 20 | μΑ | | Case 1: Input power is applied for at least 1second, and then the On/Off input is set from OFF to ON (Telegy = on/off pin transition until V _o = 10% of V _{O, set}) Case 2: On/Off input is set to (Module ON) and then input power is applied (T _{delay} = from instant at which V _{IN} = V _{IN} until V _O = 10% of V _{O, set}) Output voltage Rise time (time for Vo to rise from 10% of V _{O, set}) and I and I and I arise (time for Vo to rise from 10% of V _{O, set}) Output Voltage Overshoot - Startup I _{O=IO, max} , V _{IN} -V _{IN,min} to V _{IN,max} , T _A =25°C Remote Sense Range All V _{SENSE} 10 %
V _{O, set} Output Overvoltage Protection I All V _{SENSE} 10 % V _{O, set} Overtemperature Protection – Hiccup Auto Restart Plate Plate T _{ref} 135 'c C Frame Heat Plate T _{ref} 120 'c C V _O | Turn-On Delay and Rise Times | | | | | | | | On/Off input is set from OFF to ON (T _{delay} = on/Off pin transition until V _O = 10% of V _{O, set}) All V _{delay} = on/Off pin transition until V _O = 10% of V _{O, set}) To delay - 35 - msec Case 2: On/Off input is set to (Module ON) and then input power is applied (T _{aelay} = from instant at which V _{IN} = V _{IN} until V _O = 10% of V _{O, set}) All T _{delay} - 35 - msec Vo. set) Output Voltage Rise time (time for Vo to rise from 10% of V _{O, set}) All T _{rise} - 10 - msec Output Voltage Overshoot - Startup I _{O=IO, max} V _{IN} =V _{IN,min} to V _{IN,min} to V _{IN,max} T _A =25°C All V _{SENSE} 10 % V _{O, set} Remote Sense Range All V _{SENSE} 10 % V _{O, set} Output Overvoltage Protection - Hiccup Auto Restart All V _{O, linit} 4.0 - 5.5 V _{dc} Input Undervoltage Lockout Turn-on Threshold All V _{UVLO} - 17.5 V _{dc} Lockout Turn-on Threshold All V _{OVLO} - 17.5 V _{dc} Input Overvoltage Lockout All V _{OVLO} 79 - V _{dc} | | | | | | | | | (T _{delay} = on/off pin transition until V _O = 10% of V _{O, set}) Case 2: On/Off input is set to (Module ON) and then input power is applied (T _{delay} = from instant at which V _{IN} = V _{IN} until V _O = 10% of V _{O, set}) All T _{delay} - 35 - msec Output voltage Rise time (time for Vo to rise from 10% of V _{O, set} to 90% of V _{O, set}) All T _{rise} - 10 - 10 - msec Output Voltage Overshoot - Startup Io-lor max, V _{IN} = V _{IN} min to V _{IN} max, T _A = 25°C All V _{SENSE} - 10 % V _{O, set} Remote Sense Range All V _{SENSE} - 10 % V _{O, set} Output Overvoltage Protection¹ All V _{O, limit} 4.0 - 5.5 V _{dc} Overtemperature Protection – Hiccup Auto Restart Prame Frame Frame Heat Plate Tref 120 ° c Input Undervoltage Lockout Turn-on Threshold All V _{UVLO} - 17.5 V _{dc} V _{dc} Hysteresis 1 2 | | All | T_{delay} | - | 35 | - | msec | | applied (T _{delay} = from instant at which V _{IN} = V _{IN} until V _O = 10% of V _{O, set}) Output voltage Rise time (time for Vo to rise from 10% of V _{O, set}) All T _{rise} - 10 - msec Cime for Vo to rise from 10% of V _{O, set} to 90% of V _{O, set}) All T _{rise} - 10 - msec All V _{SENSE} - 10 % V _{O, set} Output Voltage Overshoot - Startup I _O =I _{O, maxo} V _{IN} =V _{IN,min} to V _{IN,max} T _A =25°C Remote Sense Range All V _{SENSE} 10 % V _{O, set} Output Overvoltage Protection¹ All V _{O, limt} 4.0 - 5.5 V _{dc} Overtemperature Protection – Hiccup Auto Restart Heat Plate T _{ref} 135 °C Input Undervoltage Lockout Turn-on Threshold All V _{UVLO} - 17.5 V _{dc} Input Overvoltage Lockout Turn-on Threshold Input Overvoltage Lockout All V _{OVLO} 79 - V _{dc} Input Overvoltage Lockout 79 - V _{dc} Input Overvoltage Lockout 31 V _{OVLO} 79 - V _{dc} Turn-off Threshold 81 V _{OVLO} 79 - V _{dc} Turn-off Threshold 81 V _{OVLO} 81 - V _{dc} Turn-off Threshold 81 V _{OVLO} 79 - V _{dc} Turn-off Threshold 81 V _{OVLO} 79 - V _{dc} Turn-off Threshold 81 V _{OVLO} 79 - V _{dc} Turn-off Threshold 81 V _{OVLO} 79 - V _{dc} Turn-off Threshold 81 V _{OVLO} 70 - V _{dc} Turn-off Threshold 81 V _{dc} Turn-off Threshold 81 V _{OVLO} 79 - V _{dc} Turn-off Threshold 81 V _{dc} Turn-off Threshold 81 V _{OVLO} 70 - V _{dc} Turn-off Threshold 81 | | | • | | | | | | Vo, set) Output voltage Rise time (time for Vo to rise from 10% of Vo, set to 90% of Vo, set) All Trise - 10 - msec Output Voltage Overshoot - Startup Io=Io, maxiv ViN=ViNumin to ViNumax, Ta=25°C All - 3 % Vo, set Remote Sense Range All VSENSE 10 % Vo, set Output Overvoltage Protection¹ All Vo, limt 4.0 - 5.5 Vdc Overtemperature Protection – Hiccup Auto Restart Frame Heat Plate Tref 135 ° C Input Undervoltage Lockout Turn-on Threshold All VuvLo - 17.5 Vdc Input Overvoltage Lockout All VovLo - 17.5 Vdc Vdc Input Overvoltage Lockout All VovLo 79 - Vdc Turn-off Threshold 81 Vdc Vdc Vdc Hysteresis 2 - Vdc | | ΔII | T | | 25 | | 22222 | | Output voltage Rise time (time for Vo to rise from 10% of Vo, set to 90% of Vo, set) Output Voltage Overshoot - Startup Io=Io, max Vix=Viximin to Viximax, Ta=25°C All Vsense All Vsense Output Overvoltage Protection¹ All Vo, limit 4.0 - 5.5 Vdc Overtemperature Protection – Hiccup Auto Restart Overtemperature Protection – Hiccup Auto Restart Input Undervoltage Lockout Turn-on Threshold Turn-off Threshold Hysteresis All Vovico All Vovico Turn-off Threshold All Vovico All Vovico Turn-off Threshold Hysteresis All Vovico Turn-off Threshold All Vovico Turn-off Threshold Hysteresis All Vovico Turn-off Threshold All Vovico Turn-off Threshold All Vovico Turn-off Threshold All Vovico Turn-off Threshold Hysteresis | | All | I delay | - | 35 | - | msec | | (time for Vo to rise from 10% of V _{O, set} to 90% of V _{O, set}) All I rise - 10 - msec Output Voltage Overshoot - Startup Io=Io, max, V _{IN} =V _{IN,min} to V _{IN,max} , T _A =25°C All - 3 % V _{O, set} Remote Sense Range All V _{SENSE} 10 % V _{O, set} Output Overvoltage Protection¹ All V _{O,limt} 4.0 - 5.5 V _{dc} Overtemperature Protection – Hiccup Auto Restart Frame Frame Heat Plate T _{ref} 135 °C Input Undervoltage All V _{UVLO} - 17.5 V _{dc} Lockout Turn-on Threshold All V _{UVLO} - 17.5 V _{dc} Turn-off Threshold All V _{OVLO} - 17.5 V _{dc} Input Overvoltage Lockout All V _{OVLO} - 79 - V _{dc} Turn-off Threshold 81 V _{dc} V _{dc} V _{dc} V _{dc} Hysteresis 2 - V _{dc} V _{dc} | | • 11 | - | | 10 | | | | Remote Sense Range All V _{SENSE} 10 % V _{O, set} Output Overvoltage Protection¹ All V _{O, limt} set</sub> CC Covertemperature Protection – Hiccup Auto Restart Heat Plate Plate T _{ref} T _{ref} 120 °C Input Undervoltage Lockout Turn-on Threshold Turn-off Threshold Hysteresis All V _{OVLO} Turn-off Threshold Turn-off Threshold Turn-off Threshold Hysteresis All V _{OVLO} Turn-off Threshold Ref T _O | | All | I _{rise} | - | 10 | - | msec | | Remote Sense Range All V _{SENSE} 10 % V _{o, set} | Output Voltage Overshoot - Startup | ٨Ⅱ | | | | 2 | 0/2 \/ | | Output Overvoltage Protection¹ All V _{o,limt} 4.0 - 5.5 V _{dc} Open Frame Frame Heat Plate Input Undervoltage Lockout Turn-on Threshold Hysteresis All V _{ovlo} - 17.5 V _{dc} | $I_0=I_0$, max, $V_{IN}=V_{IN,min}$ to $V_{IN,max}$, $T_A=25$ °C | All | | | - | J | 70 Vo, set | | Overtemperature Protection – Hiccup Auto Restart Open Frame Tref Heat Plate Tref Heat Tref Plate I20 °C Input Undervoltage Lockout Turn-on Threshold Turn-off Threshold Hysteresis All Vovlo All Vovlo Input Overvoltage Lockout Turn-on Threshold Turn-on Threshold Turn-on Threshold Turn-on Threshold Turn-on Threshold Turn-off Threshold Turn-off Threshold Turn-off Threshold Hysteresis Open Tref Tref Tref Tref Tref Tref Tovoltage Tref Tref Tref Tref Tref Tref Tref Tre | Remote Sense Range | All | V_{SENSE} | | | 10 | $\% V_{o,set}$ | | Overtemperature Protection – Hiccup Auto Restart Frame Heat Plate Heat Plate Tref 120 °C Input Undervoltage Lockout Turn-on Threshold Turn-off Threshold Hysteresis All VovLo All VovLo Turn-on Threshold Turn-off Threshold Hysteresis All VovLo 79 - Vdc Hysteresis 81 Vdc Hysteresis | Output Overvoltage Protection ¹ | All | $V_{o,limt}$ | 4.0 | - | 5.5 | V_{dc} | | Input Undervoltage Lockout Turn-on Threshold Turn-off Threshold Hysteresis Heat Plate Tref 120 °C Input Undervoltage Lockout Turn-on Threshold Turn-off Threshold Hysteresis All VovLo 7 7 7 7 7 7 7 7 7 8 Vdc Vdc Vdc Vdc Hysteresis All VovLo 7 7 7 7 7 7 7 7 7 7 7 7 7 | Overtemperature Protection – Hiccup Auto Restart | Frame | T_{ref} | | 135 | | °C | | Lockout Turn-on Threshold Turn-off Threshold Hysteresis All VovLo - 17.5 Vdc Vdc Hysteresis 15.5 Vdc Hysteresis 1 2 Vdc Input Overvoltage Lockout Turn-on Threshold Turn-on Threshold Turn-off Threshold Hysteresis All VovLo - 17.5 Vdc Vdc Vdc Vdc Vdc 2 Vdc Vdc Vdc Vdc Vdc Vdc Vdc Vdc | | | T_{ref} | | 120 | | °C | | Turn-off Threshold Hysteresis 15 15.5 V _{dc} 15 15.5 V _{dc} 15 15.5 V _{dc} 15 17 17 18 19 19 19 19 19 19 19 19 19 19 19 19 19 | , | ΔΙΙ | Vinno | _ | 17 5 | | V | | Hysteresis 1 2 V _{dc} Input Overvoltage Lockout Turn-on Threshold Turn-off Threshold Hysteresis All V _{OVLO} 79 - V _{dc} 81 V _{dc} 41 V _{dc} 42 - V _{dc} | | All | V UVLO | 15 | | | | | Turn-on Threshold 79 - V _{dc} Turn-off Threshold 81 V _{dc} Hysteresis 2 - V _{dc} | | | | | | | | | Turn-on Threshold79-V _{dc} Turn-off Threshold81V _{dc} Hysteresis2-V _{dc} | | All | V _{OVLO} | | | | | | Hysteresis 2 - V _{dc} | | | | | 79 | - | V_{dc} | | , vu | | | | | | | | | | | | | | 2 | - | V_{dc} | $^{^{1}-}$ Module complies with min 100 μF external output cap ### **Characteristic Curves** The following figures provide typical characteristics for the EHHD020A0F (3.3V, 5A) at 25°C. The figures are identical for either positive or negative remote On/Off logic. Figure 1. Converter Efficiency versus Output Current. Figure 2. Typical output ripple and noise ($I_0 = I_{o,max}$). Figure 3. Transient Response to $0.1A/\mu S$ Dynamic Load Change from 50% to 75% to 50% of full load, V_{in} =24V Figure 4. Transient Response to 0.1A/µS Dynamic Load Change from 50% to 75% to 50% of full load, V_{in}=48V Figure 5. Typical Start-up Using Remote On/Off, negative logic version shown ($V_{\rm IN}$ = 24V or 48V, $I_{\rm O}$ = $I_{\rm O,max}$ Figure 6. Typical Start-up Using Input Voltage $(V_{IN} = 48V, I_o = I_{o,max})$. ### **Test Configurations** Figure 7. Input Reflected Ripple Current Test Setup. **NOTE:** Measure input reflected ripple current with a simulated source inductance (L_{TEST}) of 12 μ H. Capacitor C_S offsets possible battery impedance. Measure current as shown above. Figure 8. Output Ripple and Noise Test Setup. **NOTE:** All voltage measurements to be taken at the module terminals, as shown above. If sockets are used then Kelvin
connections are required at the module terminals to avoid measurement errors due to socket contact resistance. Figure 9. Output Voltage and Efficiency Test Setup. **NOTE:** All voltage measurements to be taken at the module terminals, as shown above. If sockets are used then Kelvin connections are required at the module terminals to avoid measurement errors due to socket contact resistance. Efficiency $$\eta = \frac{V_0. I_0}{V_{IN-IIN}} X 100 \%$$ ### **Design Considerations** ### Input Filtering The power module should be connected to a low ac-impedance source. Highly inductive source impedance can affect the stability of the power module. For the test configuration in Figure 7 a $100\mu\text{F}$ electrolytic capacitor (ESR<0.7 Ω at $100\mu\text{KHz}$), mounted close to the power module helps ensure the stability of the unit. Consult the factory for further application guidelines. #### **Safety Considerations** For safety agency approval the power module must be installed in compliance with the spacing and separation requirements of the end-use safety agency standards, i.e., UL ANSI/UL* 62368-1 and CAN/CSA+ C22.2 No. 62368-1 Recognized, DIN VDE 0868-1/A11:2017 (EN62368-1:2014/A11:2017) If the input source is non-SELV (ELV or a hazardous voltage greater than 60 Vdc and less than or equal to 75Vdc), for the module's output to be considered as meeting the requirements for safety extra-low voltage (SELV) or ES1, all of the following must be true: - The input source is to be provided with reinforced insulation from any other hazardous voltages, including the ac mains. - One VI_N pin and one V_{OUT} pin are to be grounded, or both the input and output pins are to be kept floating. - The input pins of the module are not operator accessible. - Another SELV or ES1 reliability test is conducted on the whole system (combination of supply source and subject module), as required by the safety agencies, to verify that under a single fault, hazardous voltages do not appear at the module's output. ### Safety Considerations (Continued) **Note:** Do not ground either of the input pins of the module without grounding one of the output pins. This may allow a non-SELV/ES1 voltage to appear between the output pins and ground. The power module has safety extra-low voltage (SELV) or ES1outputs when all inputs are SELV or ES1. All flammable materials used in the manufacturing of these modules are rated 94V-0, or tested to the UN62368-1 for reduced thickness. For input voltages exceeding $-60~V_{dc}$ but less than or equal to $-75~V_{dc}$, these converters have been evaluated to the applicable requirements of BASIC INSULATION between secondary DC MAINS DISTRIBUTION input (classified as TNV-2 in Europe) and unearthed SELV outputs. The input to these units is to be provided with a maximum 10A time-delay fuse in the ungrounded lead. #### **Feature Descriptions** #### Remote On/Off Two remote on/off options are available. Positive logic turns the module on during a logic high voltage on the ON/OFF pin, and off during a logic low. Negative logic remote On/Off, device code suffix "1", turns the module off during a logic high and on during a logic low. Figure 10 Remote On/Off Implementation. To turn the power module on and off, the user must supply a switch (open collector or equivalent) to control the voltage ($V_{on/off}$) between the ON/OFF terminal and the V_{IN} (-) terminal Logic low is 0V \leq $V_{on/off} \leq$ 0.6 The maximum $I_{on/off}$ during a logic low is 0.15mA; the switch should be maintaining a logic low level while sinking this current. During a logic high, the typical maximum $V_{\text{on/off}}$ generated by the module is 5V, and the maximum allowable leakage current at $V_{\text{on/off}}$ = 5V is 1 μ A. If not using the remote on/off feature: For positive logic, leave the ON/OFF pin open. For negative logic, short the ON/OFF pin to $V_{IN}(-)$. #### Remote Sense Remote sense minimizes the effects of distribution losses by regulating the voltage at the remote-sense connections (See Figure 11). The voltage between the remote-sense pins and the output terminals must not exceed the output voltage sense range given in the Feature Specifications table: $$[V_O(+) - V_O(-)] - [SENSE(+) - SENSE(-)] \le 0.5 \text{ V}$$ Although the output voltage can be increased by both the remote sense and by the trim, the maximum increase for the output voltage is not the sum of both. The maximum increase is the larger of either the remote sense or the trim. The amount of power delivered by the module is defined as the voltage at the output terminals multiplied by the output current. When using remote sense and trim, the output voltage of the module can be increased, which at the same output current would increase the power output of the module. Care should be taken to ensure that the maximum output power of the module remains at or below the maximum rated power (Maximum rated power = $V_{o,set} \times I_{o,max}$). Figure 11. Circuit Configuration for remote sense . #### Input Undervoltage Lockout At input voltages below the input undervoltage lockout limit, the module operation is disabled. The module will only begin to operate once the input voltage is raised above the undervoltage lockout turn-on threshold, $V_{UV/ON}$. ### Feature Descriptions (continued) #### Input Undervoltage Lockout (continued) Once operating, the module continues to operate until the input voltage is taken below the undervoltage turn-off threshold, $V_{UV/OFF}$. ### Overtemperature Protection To provide protection under certain fault conditions, the unit is equipped with a thermal shutdown circuit. The unit will shutdown if the thermal reference point, Tref, exceeds 135°C (Figure 13, typical) or 120°C (Figure 14, typical), but the thermal shutdown is not intended as a guarantee that the unit will survive temperatures beyond its rating. The module will Overtemperature Protection automatically restart upon cool-down to a safe temperature. ### **Output Overvoltage Protection** The output over voltage protection scheme of the modules has an independent over voltage loop to prevent single point of failure. This protection feature latches in the event of over voltage across the output. Cycling the on/off pin or input voltage resets the latching protection feature. If the auto-restart option (4) is ordered, the module will automatically restart upon an internally programmed time elapsing. #### **Overcurrent Protection** To provide protection in a fault (output overload) condition, the unit is equipped with internal current -limiting circuitry and can endure current limiting continuously. At the point of current-limit inception, the unit enters hiccup mode. If the unit is not configured with auto-restart, then it will latch off following the over current condition. The module can be restarted by cycling the dc input power for at least one second or by toggling the remote on/off signal for at least one second. If the unit is configured with the auto-restart option (4), it will remain in the hiccup mode as long as the overcurrent condition exists; it operates normally, once the output current is brought back into its specified range. The average output current during hiccup is $10\% \, l_{O, max}$. #### **Output Voltage Programming** Trimming allows the output voltage set point to be increased or decreased from the default value; this is accomplished by connecting an external resistor between the TRIM pin and either the Vo(+) pin or the Vo(-) pin. Page 9 Figure 12. Circuit Configuration to Trim Output Voltage. Connecting an external resistor ($R_{trim-down}$) between the TRIM pin and the $V_{0}(-)$ (or Sense(-)) pin decreases the output voltage set point. To maintain set point accuracy, the trim resistor tolerance should be $\pm 1.0\%$. The following equation determines the required external resistor value to obtain a percentage output voltage change of $\Delta\%$ $$R_{trim-down} = \begin{bmatrix} \frac{511}{\Delta\%} & -10.22 \end{bmatrix} K\Omega$$ Where $$\Delta\% = \left(\begin{array}{c} 3.3V - V_{DESIRED} \\ \hline 3.3V \end{array}\right) \times 100$$ For example, to trim-down the output voltage of the module by 6% to 3.102V, $R_{\text{trim-down}}$ is calculated as follows: $$\Delta\% = 6$$ $$R_{\text{trim-down}} = \begin{bmatrix} \frac{511}{6} & -10.22 \end{bmatrix} K\Omega$$ $R_{trim-down} = 74.9 K\Omega$ Connecting an external resistor ($R_{trim-up}$) between the TRIM pin and the $V_0(+)$ (or Sense (+)) pin increases the output voltage set point. The following equation determines the required external resistor value to obtain a percentage output voltage change of $\Delta\%$: #### Feature Descriptions (continued) $$R_{\text{trim-down}} = \begin{bmatrix} 5.11 \times 3.3 \times (100 + \Delta\%) & -511 \\ \hline 1.225 \times \Delta\% & -\Delta\% & -10.22 \end{bmatrix} \text{ K}\Omega$$ Where $$\Delta\% = \left(\frac{V_{desired} - 3.3}{3.3V}\right) \times 100$$ For example, to trim-up the output voltage of the module by 4% to 3.432V, $R_{\text{trim-up}}$ is calculated is as follows: $$R_{\text{trim-down}} = \begin{bmatrix} 511 \times 3.3 \times (100 + 4) & 511 \\ \hline 1.225 \times 4 & -4 \end{bmatrix} - 10.22 K\Omega$$ $R_{trim-down} = 219.9 \text{ K}\Omega$ The voltage between the $V_0(+)$ and $V_0(-)$ terminals must not exceed the minimum output overvoltage protection value shown in the Feature Specifications table. This limit includes any increase in voltage due to remote-sense compensation and output voltage set-point adjustment trim. Although the output voltage can be increased by both the remote sense and by the trim, the maximum increase for the output voltage is not the sum of both. The maximum increase is the larger of either the remote sense or the trim. The amount of power delivered by the module is defined as the voltage at the output terminals multiplied by the output current. When using remote sense and trim, the output voltage
of the module can be increased, which at the same output current would increase the power output of the module. Care should be taken to ensure that the maximum output power of the module remains at or below the maximum rated power (Maximum rated power = Vo.set x Io.max). #### **Thermal Considerations** The power modules operate in a variety of thermal environments; however, sufficient cooling should be provided to help ensure reliable operation. Considerations include ambient temperature, airflow, module power dissipation, and the need for increased reliability. A reduction in the operating temperature of the module will result in an increase in reliability. The thermal data presented here is based on physical measurements taken in a wind tunnel, using automated thermo-couple instrumentation monitor key component temperatures: FETs, diodes, control ICs, magnetic cores, ceramic capacitors, opto-isolators, and module pwb conductors, while controlling the ambient airflow rate temperature. For a given airflow and ambient temperature, the module output power is increased, until one (or more) of the components reaches its maximum derated operating temperature, as defined in IPC-9592. This procedure is then repeated for a different airflow or ambient temperature until a family of module output derating curves is obtained. The thermal reference point, T_{ref1} and T_{ref2} used in the specifications for open frame module is shown in Figure 13. For reliable operation this temperature should not exceed 122°C and 123°C Figure 13. Tref Temperature Measurement Locations for Open Frame Module. The thermal reference point, T_{ref} , used in the specifications for modules with heatplate is shown in Figure 14. For reliable operation this temperature should not exceed 100 $^{\circ}$ C. #### Thermal Considerations (continued) Figure 14. Tref Temperature Measurement Location for Module with Heatplate. #### Heat Transfer via Convection Increased airflow over the module enhances the heat transfer via convection. Derating curves showing the maximum output current that can be delivered by each module versus local ambient temperature (TA) for natural convection and up to 3m/s (600 ft./min) forced airflow are shown in Figures 15 - 20. Please refer to the Application Note "Thermal Characterization **Process** For Open-Frame Board-Mounted Power Modules" for a detailed discussion of thermal aspects including maximum device temperatures. Figure 15. Output Current Derating for the Open Frame Module; Airflow in the Transverse Direction from Vout(-) to $V_{out}(+)$; V_{IN} =48V, V_{O} =3.3V. Figure 16. Output Current Derating for the Module with Heatplate; Airflow in Figure 17. Output Current Derating for the Module with—18H Heatplate; Airflow in the Transverse Direction from Vout(-) to Vout(+); VIN =48V, Vo=3.3V Figure 18. Output Current Derating for the Open Frame Module; Airflow in the Transverse Direction from $V_{out}(-)$ to $V_{out}(+)$; V_{IN} =24V, V_{O} =3.3V. Figure 19. Output Current Derating for the Module with Heatplate; Airflow in the Transverse Direction from Vout(-) to Vout(+); VIN =24V, Vo=3.3V. ### Thermal Considerations (continued) Figure 20. Output Current Derating for the Module with—18 Heatplate; Airflow in the Transverse Direction from $V_{out}(-)$ to $V_{out}(+)$; $V_{IN} = 24V$, $V_O = 3.3V$. #### Heat Transfer via Conduction The module can also be used in a sealed environment with cooling via conduction from the module's top surface through a gap pad material to a cold wall, as shown in Figure 21. This capability is achieved by insuring the top side component skyline profile achieves no more than 1mm height difference between the tallest and the shortest power train part that benefits from contact with the gap pad material. The output current derating versus cold wall temperature, when using a gap pad such as Bergquist GP2500S20, is shown in Figure 22 Figure 21. Cold Wall Mounting Figure 22. Derated Output Current versus Cold Wall Temperature with local ambient temperature around module at 85C; V_{IN} =24V or 48V. ### **Through-Hole Soldering Information** #### Lead-Free Soldering The EHHD036A0Fxx RoHS-compliant through-hole products use SAC (Sn/Ag/Cu) Pb-free solder and RoHS-compliant components. They are designed to be processed through single or dual wave soldering machines. The pins have a RoHS-compliant finish that is compatible with both Pb and Pb-free wave soldering processes. A maximum preheat rate of 3°C/s is suggested. The wave preheat process should be such that the temperature of the power module board is kept below 210°C. For Pb solder, the recommended pot temperature is 260°C, while the Pb-free solder pot is 270°C max. #### Paste-in-Hole Soldering The EHHD036A0Fxx module is compatible with reflow paste-in-hole soldering processes shown in Figures 24-26. Since the EHHD036A0FxxZ module is not packaged per J-STD-033 Rev.A, the module must be baked prior to the paste-in-hole reflow process. Please contact your ABB Sales Representative for further information. #### Pick and Place The EHHD036A0A modules use an open frame construction and are designed for a fully automated assembly process. The modules are fitted with a label designed to provide a large surface area for pick and place operations. The label meets all the requirements for surface mount processing, as well as safety standards, and is able to withstand reflow ### Through-Hole Soldering Information(continued) temperatures of up to 300°C. The label also carries product information such as product code, serial number and the location of manufacture. Figure 23. Pick and Place Location. #### Nozzle Recommendations The module weight has been kept to a minimum by using open frame construction. Even so, these modules have a relatively large mass when compared to conventional SMT components. Variables such as nozzle size, tip style, vacuum pressure and placement speed should be considered to optimize this process. The minimum recommended nozzle diameter for reliable operation is 6mm. The maximum nozzle outer diameter, which will safely fit within the allowable component spacing, is 9 mm. Oblong or oval nozzles up to 11 x 9 mm may also be used within the space available. #### Tin Lead Soldering The EHHD036A0F power modules are lead free modules and can be soldered either in a lead-free solder process or in a conventional Tin/Lead (Sn/Pb) process. It is recommended that the customer review data sheets in order to customize the solder reflow profile for each application board assembly. The following instructions must be observed when soldering these units. Failure to observe these instructions may result in the failure of or cause damage to the modules, and can adversely affect long-term reliability. In a conventional Tin/Lead (Sn/Pb) solder process peak reflow temperatures are limited to less than 235°C. Typically, the eutectic solder melts at 183°C, wets the land, and subsequently wicks the device connection. Sufficient time must be allowed to fuse the plating on the connection to ensure a reliable solder joint. There are several types of SMT reflow technologies currently used in the industry. These power modules can be reliably soldered using natural forced convection, IR (radiant infrared), or a combination of convection/IR. For reliable soldering the solder reflow profile should be established by accurately measuring the modules CP connector temperatures. #### Lead Free Soldering The –Z version of the EHHD024A0A modules are lead-free (Pb-free) and RoHS compliant and are both forward and backward compatible in a Pb-free and a SnPb soldering process. Failure to observe the instructions below may result in the failure of or cause damage to the modules and can adversely affect long-term reliability. Figure 24. Reflow Profile for Tin/Lead (Sn/Pb) process. Figure 25. Time Limit Curve Above 205°C for Tin/Lead (Sn/Pb) process #### **Through-Hole Soldering Information** (continued) #### Pb-free Reflow Profile Power Systems will comply with J-STD-015 Rev. C (Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices) for both Pb-free solder profiles and MSL classification procedures. This standard provides a recommended forced-air-convection reflow profile based on the volume and thickness of the package (table 4-2). The suggested Pb-free solder paste is Sn/Ag/Cu (SAC). The recommended linear reflow profile using Sn/Ag/Cu solder is shown in Figure 26. Figure 26. Recommended linear reflow profile using Sn/Ag/Cu solder. #### Post Solder Cleaning and Drying Considerations Post solder cleaning is usually the final circuit-board assembly process prior to electrical board testing. The result of inadequate cleaning and drying can affect both the reliability of a power module and the testability of the finished circuit-board assembly. For guidance on appropriate soldering, cleaning and drying procedures, refer to ABB Board Mounted Power Modules: Soldering and Cleaning Application Note (AN04-001). ### **EMC Considerations** The circuit and plots in Figure 27 shows a suggested configuration to meet the conducted emission limits of EN55032 Class B. Figure 27. EMC Considerations For further information on designing for EMC compliance, please refer to the FLT0012A0 data sheet | Detector:
Limit:
Remark: | PK+AV
EN55022B | Test-time[ms]: 20
Transductor: 4 | | Detector:
Limit:
Remark: | PK+AV
EN55022B | Test-time(ms): 20
Transductor: 4 | | | |--|-------------------|---|--|--|-------------------|---|--|-------------| | Start(MHz)
0.150
0.400
1.000
5.000
10.000 | |
End(MHz)
0.400
1.000
5.000
10.000
30.000 | Step(MHz)
0.002
0.005
0.005
0.010
0.050 | freq, step Start(MH 0.150 0.400 1.000 10.000 | 2] | End(MHz)
0.400
1.000
5.000
10.000
30.000 | Step
0.00
0.00
0.00
0.01
0.05 | 5
5
0 | | dBuV
100 | | | | dBuV 100 | | | | scan result | | 40 | M | <i></i> | | 40 ~~~~ | M., | | | | | 0 -20 O.150 MHz | 0.50 1 | | | 0 -20 Hz 0.150 MF | 0.50 | 1.00 | 5.00 10.00 | 30.000 MHz | $$V_{IN}$$ = 48V, I_o = $I_{o,max}$, N Line ### Mechanical Outline for Through-Hole Module Dimensions are in millimeters and [inches]. Tolerances: x.x mm ± 0.5 mm [x.xx in. ± 0.02 in.] (Unless otherwise indicated) x.xx mm ± 0.25 mm [x.xxx in ± 0.010 in.] ^{*}Top side label includes ABB name, product designation and date code. *For optional pin lengths, see Table 2, Device Coding Scheme and Options ### Mechanical Outline for Through-Hole Module with Heat Plate (-H Option) Dimensions are in millimeters and [inches]. Tolerances: x.x mm \pm 0.5 mm [x.xx in. \pm 0.02 in.] (Unless otherwise indicated) x.xx mm \pm 0.25 mm [x.xxx in \pm 0.010 in.] *For optional pin lengths, see Table 2, Device Coding Scheme and Options *Bottom side label includes product designation and date code. **Side label contains product designation and date code. # Mechanical Outline for Through-Hole Module with ¼ Brick Heat Plate (-18H Option) Dimensions are in millimeters and [inches]. Tolerances: x.x mm \pm 0.5 mm [x.xx in. \pm 0.02 in.] (Unless otherwise indicated) x.xx mm \pm 0.25 mm [x.xxx in \pm 0.010 in.] *For optional pin lengths, see Table 2, Device Coding Scheme and Options ### **Recommended Pad Layout** Dimensions are in millimeters and [inches]. Tolerances: x.x mm \pm 0.5 mm [x.xx in. \pm 0.02 in.] (Unless otherwise indicated) x.xx mm \pm 0.25 mm [x.xxx in \pm 0.010 in. | Pin | Function | |-----|----------| | 1 | Vi(+) | | 2 | ON/OFF | | 3 | vi(-) | | 4 | Vo(-) | | 5 | SENSE(-) | | 6 | TRIM | | 7 | SENSE(+) | | 8 | Vo(+) | TH Recommended Pad Layout (Component Side View) #### NOTES: FOR 0.030" X 0.025" RECTANGULAR PIN, USE 0.063" PLATED THROUGH HOLE DIAMETER FOR 0.62 DIA" PIN, USE 0.087" PLATED THROUGH HOLE DIAMETER ### **Ordering Information** Please contact your ABB Sales Representative for pricing, availability and optional features. | Product Code | Input Voltage | Output
Voltage | Output
Current | On/Off
Logic | Connector
Type | Ordering Code | |--------------------|---------------------------------|-------------------|-------------------|-----------------|-------------------|---------------| | EHHD036A0F 41Z | 24V/48V (18-75V _{dc}) | 3.3V | 36A | Negative | Through hole | 150029666 | | EHHD036A0F 41-HZ | 24V/48V (18-75V _{dc}) | 3.3V | 36A | Negative | Through hole | 150029824 | | EHHD036A0F 41-18HZ | 24V/48V (18-75V _{dc}) | 3.3V | 36A | Negative | Through hole | 150029826 | Table 1. Device Codes | | Characteristic | Character and Position | on | Definition | |---------|---|------------------------|-----|--| | | Form Factor E | | | E = 1/8 Brick | | | Family Designator I | Н | | HH = Hammerhead [™] Series | | Ratings | Input Voltage | D | | D = Ultra Wide Range, 18V-75V | | | Output Current | 036A0 | | 036A0 = 036.0 Amps Maximum Output Current | | | Output Voltage | F | | F=3.3V nominal | | | | | | Omit = Default Pin Length shown in Mechanical Outline Figures | | | Pin Length | 6 | | $6 = Pin Length: 3.68 mm \pm 0.25 mm$, (0.145 in. ± 0.010 in.) | | | | 8 | | 8 = Pin Length: $2.79 \text{mm} \pm 0.25 \text{mm}$, ($0.110 \text{in.} \pm 0.010 \text{in.}$) | | | A satisfies & all solving as | | | Omit = Latching Mode | | | Action following
Protective Shutdown | 4 | | 4 = Auto restart following shutdown (overcurrent/overvoltage)
Must be ordered | | | 0-1041 | | | Omit = Positive Logic | | | On/Off Logic | 1 | | 1 = Negative Logic | | Options | Customer Specific | | Υ | XY= Customer Specific Modified Code, Omit for Standard Code | | | | | | Omit = Standard open Frame Module | | | Mechanical Features | | Н | H= 1/8th Brick size heat plate, for use with heat sinks (not available with -S option) | | | | | 18H | 18H= 1/4th Brick size heat plate with unthreaded inserts for use in coldwall applications (not available with -S option) | | | RoHS | | | Omit = RoHS 5/6, Lead Based Solder Used Z Z = RoHS Compliant | Table 2. Device Coding Scheme and Options ### **Contact Us** For more information, call us at 1-877-546-3243 (US) 1-972-244-9288 (Int'l) ## Change History (excludes grammar & clarifications) | Version | Date | Description of the change | |---------|------------|---------------------------| | 1.7 | 04/08/2022 | Updated ROHS | #### ABB 601 Shiloh Rd. Plano, TX USA ### abbpowerconversion.com We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail. ABB does not accept any responsibility whatsoever for potential errors or possible lack of information in this document. We reserve all rights in this document and in the subject matter and illustrations contained therein. Any reproduction, disclosure to third parties or utilization of its contents – in whole or in parts – is forbidden without prior consent of ABB Copyright© 2021 ABB All rights reserved